

Overview of Experimental Studies on Inter-ELM Pedestal localized Fluctuations and Challenges for their Modeling

F. M. Laggner¹, A. Diallo², E. Wolfrum³, M. Cavedon³, B. Vanovac³, E. Kolemen¹

with contributions of

the ASDEX Upgrade Team, the DIII-D team and the EUROfusion MST1 Team

¹Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, USA ²Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA ³Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany

NSTX-U / Magnetic Fusion Science meeting, Princeton, Dec. 03, 2018

ASDEX Upgrade

PRINCETON UNIVERSITY Long effort to characterize pedestal instabilities...

Challenge - Diagnosing the pedestal

- Profiles & fluctuations required for good interpretation
- Uncertainties are associated with every measurement
 - Awareness necessary when interpreting
- Understand and to consider the fundamental limitations of the utilized diagnostics
 - Some examples:

PRINCETON

UNIVERSITY

- ➤ ECE: shine through
- BES: radial widening of emission profile
- CER: assumption of equilibrium temperature

Theory - pedestal stability

- Peeling-ballooning P-B theory:
 - Peeling Mode
 - Current driven instability
 - Ballooning Mode
 - Pressure driven instability

 P-B gives a 'hard' limit for the edge pressure

Theory - pedestal evolution

Model for ELM cycle

- (1) Pedestal height and width increase till kinetic ballooning mode (KBM) boundary ('soft limit') is reached
- (2) Pedestal gradient is clamped and height and width evolve along the KBM limit
- (3) ELM crash when P-B ('hard') limit is reached
- Limitation of pedestal evolution ('soft limit') observed in several experiments
 - [A. Burckhart et al., PPCF 2010]
 - [D. Dickinson et al., PRL 2012]
 - [A. Diallo et al., PRL 2014]

[P. B. Snyder et al., POP 2012]

Drive and suppression of pedestal instabilities

• Pressure gradient (∇p)

PRINCETON

UNIVERSITY

- Typically drives ballooning-type instabilities

 ∇p linked to density (n) and temperature
- Edge current density (j_{tor})
 - Main contribution is bootstrap current (j_{BS})

 $j_{BS} \propto \sqrt{\varepsilon} \nabla p / \beta_{\vartheta}$ > Order: $\nabla n \sim 0.5$, $\nabla Te \sim 0.15$ and $\nabla Ti \sim 0.1$

- Modifies the safety factor profile (q)
 - Region of high magnetic shear
- E×B rotation (V_{E×B})
 - Radial electric field (Er)

$$E_r = \frac{\nabla p_{\alpha}}{Z_{\alpha} e n_{\alpha}} - v_{\Theta,\alpha} B_{\phi} + v_{\phi,\alpha} B_{\Theta}$$

Sheared flows suppress instabilities

Distinct pedestal recovery phases & fluctuations

- Electron density (n_e) gradient and ion Temperature (T_i) gradient
 - Fluctuations absent!
- Phase (II):
 - Electron temperature (T_e) gradient
 - Medium frequency range fluctuations
- Phase (III):
 - Gradient saturation
 - High frequency fluctuations
 - Low frequency fluctuations and precursor modes

[M. Cavedon et al., PPCF 2017, PSI 2018 & JNM submitted]

Abstract picture of the pedestal evolution

- Electron density (n_e) gradient and ion Temperature (T_i) gradient
 - Fluctuations absent!
- Phase (II):
 - Electron temperature (T_e) gradient
 - Medium frequency range fluctuations
- Phase (III):
 - Gradient saturation
 - High frequency fluctuations
 - Low frequency fluctuations and precursor modes

Three instability categories – An Overview

Category 1

- Separatrix localized
 - Appears at medium frequency range (30 kHz to 150 kHz)
 - Onset after pedestal recovery phase I
 - 'Ballooned' mode structure

Category 2

- Localized towards the E_{r,min}
 - Appear at high frequency range (> 200 kHz)
 - \succ onset connected to T_e pedestal evolution (after recovery phase II)
 - HFS magnetic response

• Category 3

- Localized at the pedestal top
 - Appear at low frequency range (< 30 kHz)</p>

category

category 1

 $\nabla B \times B$

Saturated instabilities – Present for tens of ms

PRINCETON

UNIVERSITY

ASDEX Upgrade 8 n_e [10¹⁹ m⁻³] 6 High (#30701) and low (#30721) pedestal top electron 4 collisionality v*_{e,ped} #30701, 3.3 - 3.4 s 2 #30721, 1.8 - 1.9 s 1.0 Motivation for comparison: T_e [keV] Pressure (gradient) driven instabilities should not change their behaviour 0.4 0.2 In both discharges gradients are clamped before the ELM onset ('soft limit') 8.0 0.6 [kba] 0.6 [kba] 2.0 0.90 0.95 0.85 1.00 1.05 ρ_{pol}

UNIVERSITY Sequence of pedestal recovery phases remains

Category 2

- First $n_{e,ped}$ recovery, then $T_{e,ped}$
- High frequency fluctuations start afterwards

High $v_{e,ped}^*$ (#30701) case

• $max(\nabla n_e)$ and $max(\nabla T_e)$ clamped when high frequency fluctuations

 Detected fluctuation frequency differs in both cases

Low $v_{e,ped}^*$ (#30721) case

- H-mode → strong E×B background velocity at the edge
- ASDEX Upgrade: E_r is well described by estimation
 ∇p_i/en_i in the steep gradient region

[E. Viezzer et al., NF 2014]

E_r and ∇p_e/en_e agree within their errors in the analyzed cases

Lab frame frequency depends E×B rotation

Category 2

- 11 discharge intervals:
 - Constant I_p and B_t
 - Selected to span wide range of $\nabla p_e \text{/en}_e$
 - Clear magnetic fluctuations
 - Onset correlated to T_{e,ped} recovery

- Detected fluctuation frequency increases with $\nabla p_e/en_e$ at position of max($\nabla p_e)$

Mode is located in the steep gradient region

Toroidal mode structure of n ~ 11

Category 2

- Fit of n using the discharge intervals with different $\nabla p_e/en_e$

- Fit of toroidal mode number:
 - $n \sim U_{tor} \cdot f_{magn} / (v_{\nabla p_e/en_e} \cdot q \cdot U_{tor} / U_{pol} + v_{tor})$
- Fitted **n ~ -11**
 - In agreement with n numbers determined from magnetic pickup coils

PRINCETON HFS signature suggests peeling like mode structure

Category 2

- Fluctuation signature visible on the HFS
 - Similar onset as on the LFS
 - Same frequencies as on LFS

#30701, 3.300 - 3.400 s 250 log(power) [a.u.] 1.5 200 [ZHX] 100 1.0 HFS 50 1.0 10g(power) [a.u.] 250 200 ZH3 100 LFS 50 10 15 0 5 time relative to ELM onset [ms]

PRINCETON

UNIVERSITY

Test: Shape dependence – Triangularity variation

Category 1 Category 2

- ELM frequency (f_{ELM}) and PB boundary affected
 - Reduction of f_{ELM}

[F. M. Laggner et al., IAEA FEC 2018]

- Pedestal recovery phases extended at high triangularity
- Extension of PB stable area
- **BUT: Sequence of pedestal recovery phases remains**
 - Fluctuation onsets stay correlated

5

.....

δ 0.21

300

100

4.0

2.0

20 +++++

(ZHZ) 200

m⁻⁴)

(keV/m) (10²¹

(kA)

Test: Safety factor dependence – I_p variation

Category 1

- Study focused on the structure of the ELM crash
- BUT: pre-ELM and ELM structure are correlated
- Average toroidal mode number <n> decreases with increasing q₉₅
 - Poloidal structure conserved

A. F. Mink, et al., PPCF 2018

NSTX-U / Magnetic Fusion Science meeting, Princeton, Dec. 03, 2018

Category III localized at the pedestal top

Category 3 Category 2

- Analysis from ECE & magnetics
 - Category III at low frequency in the ECE & magnetics
 - Category II visible in magnetics
- Change Category III frequency with P_{NBI}
 - Decrease of pedestal top rotation

Category 1

Matching condition for Category I and III

- Non-linear coupling of inter-ELM instabilities
- Fluctuation band amplitudes tracked through ELM cycle

Category 3

- Change in the spectral power of individual bands
- **Radial localization of bands using BES**
 - Category III (green) further inwards

F. M. Laggner

230

R[cm]

Summary - Three instability categories

Category 1

- Separatrix localized
 - Appears at medium frequency range (30 kHz to 150 kHz)
 - Onset after pedestal recovery phase I
 - 'Ballooned' mode structure

Category 2

- Localized towards the E_{r,min}
 - Appear at high frequency range (> 200 kHz)
 - \succ onset connected to T_e pedestal evolution (after recovery phase II)
 - HFS magnetic response
- Category 3
 - Localized at the pedestal top
 - Appear at low frequency range (< 30 kHz)</p>
- MODELLING CHALLANGED TO REPRODUCE 'ROBUST' INSTABILITIES
- [F. M. Laggner et al., PSI 2018 & JNM submitted]

Why n changes with q_{95}

Category I

Minimization of n for a given distance of resonances

Inter-ELM pedestal evolution in AUG

250

- Distinct recovery phases of n_e and T_e profiles
 - $max(-\nabla n_e)$ saturates with onset of medium frequency fluctuations
 - $max(-\nabla T_e)$ evolves till high frequency fluctuation onset
- Fluctuation signature visible on the HFS

#30701, 3.30 - 3.40 s

- Pedestal recovery phases in D and H
 - 1) n_e pedestal
 - 2) T_e pedestal
- Different timescales
 - attributed to changes in Pnet, gas puff and neutral velocity
- Indication for similar mechanisms acting in the pedestal recovery

26

- $\partial Br/\partial t$ measured at the LFS midplane
 - Radial magnetic fluctuations ($\partial Br/\partial t$)
- Core modes
 - Frequency < 40 kHz
- Lower magnetic activity during Δ tne
 - 40 kHz < frequency < 200 kHz
- After ΔtTe activity at high frequencies
 - Frequency > 200 kHz

- Negative n:
 - Counter-current propagation or propagation in electron diamagnetic direction
 - Direction of the E×B background flow
 - Er at the edge approximated by ∇p/en
 [E. Viezzer et al., NF 2014]
- Two mode number branches with similar n [F. Mink et al., accepted in PPCF]
- Slope represents different rotation velocity relative to the lab frame
 - E×B velocity affected by shallower ∇ne

- ∇Ti recovers during Δtne
 - Established before the recovery of $\nabla \mathsf{Te}$
- Consistent with recent findings in D plasmas
 - Poster on Friday
 - M. Cavedon et al., Session YP10: YP10.00057 [M. Cavedon et al., PPCF in preparation]

- Lower magnetic activity during Δ tne
 - 40 kHz < frequency < 200 kHz
- Two mode number branches
- Slope shallower than for D and H
 - Low rotation velocity relative to the lab frame

