

Validation of Gyrokinetic Simulations in NSTX via Comparisons of Simulated Turbulence with a New High-k Scattering Synthetic Diagnostic

J. Ruiz Ruiz¹

W. Guttenfelder², N. Howard¹, N. F. Loureiro¹, A. E. White¹, J. Candy⁷, Y. Ren², S.M. Kaye²,
B. P. LeBlanc², E. Mazzucato², K.C. Lee³, C.W. Domier⁴, D. R. Smith⁵, H. Yuh⁶
1. MIT 2. PPPL 3. NFRI 4. UC Davis 5. U Wisconsin 6. Nova Photonics, Inc. 7. General Atomics

Interview for postdoctoral position, PPPL, Princeton NJ January 31, 2019

Alcator C-Mod

Work supported by DOE contracts DE-AC02-09CH11466 and DE-AC02-05CH11231

Outline

- Motivation
- NSTX H-mode discharge under study
- High-k Scattering at NSTX
- Numerical GYRO simulations needed
- Electron heat flux comparisons
- Synthetic comparisons
 - Synthetic diagnostic description
 - Validation workflow
 - k-spectra and f-spectra comparisons

Electron Thermal Transport P_e is Dominant Heat Loss Mechanism is Spherical Tokamak NBI-heated H-modes

- Ion thermal transport (P_i) observed close to neoclassical levels in NSTX NBI heated H-modes, due to *suppression of ion scale turbulence by ExB shear and strong plasma shaping* [*cf. Kaye NF 2007*].
- Electron thermal transport is always anomalous
- This work will focus on electron thermal transport P_e: Compare experimental heat fluxes and measured high-k turbulence spectra to validate extensive set of nonlinear gyrokinetic simulations (GYRO):
 - Ion scale: $k_{\theta} \rho_s < 1$
 - Electron scale: $k_{\theta}\rho_s > 1$

 $\rho_{\rm s}$ ion sound gyro radius

Validate NL GYRO simulation in an NSTX NBI-heated H-mode featuring strong and weak ETG conditions

- Controlled I_p ramp-down separates two steady discharge phases; little MHD activity.
- Local increase in equilibrium density gradient |∇n| modifies ETG drive from strong to weak, consistent with changes in measured high-k turbulence [*]
- P_e [MW] and turbulence levels very sensitive to ∇T_e , ∇n_e [*]
 - $-\nabla T_e$: ETG drive
 - $-\nabla n_e$: ETG stabilizing mechanism

[*] Ruiz Ruiz PoP 2015

Use a high-k scattering diagnostic to probe electron scale turbulence on NSTX

Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Use a high-k scattering diagnostic to probe electron scale turbulence on NSTX

- $P_s \propto \left(\frac{\delta n}{n}\right)^2$ Scattered power density spherical Vacuum vessei mirror Gaussian microwave probe beam 1.5 $- f = 280 GHz (>> f_{pe}, f_{ce})$ Ch. $\mathbf{k}_{s} = \mathbf{k}_{turb} + \mathbf{k}_{i}$ $\mathbf{\omega}_{s} = \mathbf{\omega}_{turb} + \mathbf{\omega}_{i}$ 0.5• Ray tracing to determines \vec{k}_{turb} Э Ш 0 -0.5 Scattering system is *toroidally* localized [*] → We model a 2D synthetic diagnostic —1 Ciosed Rux surface -1.5 Probe beam **Preview**: Synthetic high-k diagnostic will require use of **hybrid scale** simulations (~ big-box e- scale simulations. Traditional e- scale simulations lack numerical k-X (m) resolution)
 - View from top of NSTX

[*] Mazzucato PoP 2003, Mazzucato NF 2006

NSTX-U

0

Compare electron thermal power P_{e} to all simulations; high-k turbulence only to hybrid simulation

- Electron thermal power P_e (TRANSP) comparisons via sensitivity scans of GYRO simulations within uncertainties
- High-k turbulence spectra
 comparisons via synthetic diagnostic
 - *f*-spectrum (spectral peak < f >, width σ_f)
 - k-spectrum shape
 - Relative fluctuation level
- <u>Will NOT compare</u>
 Absolute fluctuation level (diagnostic not absolutely calibrated)

ion scale hybrid scale

Compare electron thermal power P_e to all simulations; high-k turbulence only to hybrid simulation

NSTX-U

Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Main questions we aim to answer with this validation effort

Can we explain electron thermal transport P_e ?

Can we explain the measured high-k fluctuation spectra?

Are measured fluctuations responsible for any thermal transport P_e?

Main questions we aim to answer with this validation effort

Can we explain electron thermal transport P_e ?

Can we explain the measured high-k fluctuation spectra?

Are measured fluctuations responsible for any thermal transport P_e?

➔ Use gyrokinetic simulation and a synthetic diagnostic to constrain turbulence model

NSTX-U

Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Numerical resolution details of GYRO ion scale and hybrid scale simulations

- **Ion scale** simulation only simulates ion scale turbulence $(k_{\theta}\rho_s \leq 1)$
- **Hybrid scale** simulation contain same physics as standard e- scale simulation (ETG), but different wavenumber resolution for synthetic diagnostic deployment
- Experimental profiles used as input
 - Local simulations performed at scattering location (r/a~0.7, R~135 cm).
 - 3 kinetic species, D, C, e (Z_{eff}~1.85-1.95)
 - Electromagnetic: $A_{\parallel}+B_{\parallel}$, $\beta_e \sim 0.3$ %.
 - Collisions ($v_{ei} \sim 1 c_s/a$).
 - ExB shear ($\gamma_{\rm E}$ ~0.13-0.16 c_s/a) + parallel flow shear ($\gamma_{\rm p}$ ~ 1-1.2 c_s/a)
 - Fixed boundary conditions (radial buffer region).

Wavenumber grid from standard e- scale simulation is too coarse to resolve measurement k

* max $\mathbf{k}_{\theta} \mathbf{\rho}_{s}$ is different for high and low ETG cases

NSTX-U

Flux comparisons via sensitivity scans maximizing thermal transport P_e

Ion scale sim

- Scans performed for scaled $-\sigma(\nabla n)$
- PT-scans show extremely stiff P_e (TEM), close to marginal (Dimits shift regime)

lon scale sim

- Scans performed for scaled $-\sigma(\nabla n)$
- PT-scans show extremely stiff P_e (TEM), close to marginal (Dimits shift regime)

Weak ETG ion thermal transport: ion scale simulation brackets experimental P_i

- Electron thermal transport P_e P_e (i scale) ~ 10 X P_e^{exp} for a/L_{Te} > 5
- Ion thermal transport P_i
 P_i(i scale) ~ 10 X P_i^{exp} for a/L_{Te} > 5
- P_i overprediction conflicts with neoclassical transport levels ~ 0.3 MW
- Suggest at most a small ion-scale turbulence level
- Negligible ion thermal transport from escales

Weak ETG ion thermal transport: ion scale simulation brackets experimental P_i

- Electron thermal transport P_e
 P_e(i scale) ~ 10 X P_e^{exp} for a/L_{Te} > 5
- Ion thermal transport P_i
 P_i(i scale) ~ 10 X P_i^{exp} for a/L_{Te} > 5
- P_i overprediction conflicts with neoclassical transport levels ~ 0.3 MW
- ➔ Suggest at most a small ion-scale

Weak ETG condition

- Ion scale turbulence displays stiff TEM transport: $P_e, P_i (i \text{ scale}) \rightarrow 10 X P_e^{exp}, P_i^{exp}$
- GYRO overprediction conflicts with neoclassical P_i
- Electron scale turbulence can match P_e

What is the responsible transport mechanism for the weak ETG condition?

Are we matching simulations for the good reasons?

Which simulation is most experimentally meaningful?

Constrain models using a synthetic diagnostic for high-k scattering

Synthetic diagnostic is applied to hybrid simulation for direct comparison with measured high-k fluctuations

 $\delta \hat{n}_{e}^{syn}(t) = \int \delta n_{e}(\vec{r}, t) \Psi_{\mathsf{R}}(\vec{r}) e^{-i\vec{k}_{0}\cdot\vec{r}} d^{3}\vec{r}$

- Gaussian filter in space is applied to raw GYRO density fluct. amplitude
- Obtain a filtered time series of density fluctuations $\delta \hat{n}_e^{syn}(t)$ (analyzed the same way as experiment)
- New implementation in real space differs from past work (Poli PoP 2010)

NSTX-U

Compare total power P_{tot} , spectral peak < f > and spectral width σ_f in a prescribed frequency band

f-spectrum is determined by turbulence characteristics, *k*-resolution and Doppler shift

• **Spectral peak** < f > is dominated by Doppler Shift

 $f_{\rm turb} \ll f_{\rm Dop}$

 $f_{\rm turb} \sim f_{\rm turb}$

 $f_{\text{Dop}} = \vec{k} \cdot \vec{v} \sim 1 \text{MHz}$ $f_{\text{turb}} \sim 50 - 100 \text{ kHz}$

- Not a critical constrain on simulation model
- **Spectral width** σ_f determined by combination of:
 - Turbulence spectrum in plasma frame
 - k-resolution of the high-k diagnostic
 - *k*-grid resolution of the simulation
 - Doppler shift

f-spectrum is determined by turbulence characteristics, *k*-resolution and Doppler shift

Spectral peak < f > is dominated by Doppler Shift

 $f_{\rm turb} \ll f_{\rm Dop}$

- Not a critical constrain on simulation model

- **Spectral width** σ_f determined by combination of:
 - Urbulence spectrum in plasma frame
 - k-resolution of the high-k diagnostic
 - *k*-grid resolution of the simulation
 - Doppler shift

Difficult to discriminate between models using the frequency spectrum

 $f_{\rm Dop} = \vec{k} \cdot \vec{v} \sim 1 {\rm MHz}$

 $f_{\rm turb} \sim 50 - 100 \, \rm kHz$

f-spectrum is determined by turbulence characteristics, *k*-resolution and Doppler shift

Spectral peak < f > is dominated by Doppler Shift

 $f_{\rm turb} \ll f_{\rm Dop}$

- Not a critical constrain on simulation model

- **Spectral width** σ_f determined by combination of:
 - Urbulence spectrum in plasma frame
 - k-resolution of the high-k diagnostic
 - *k*-grid resolution of the simulation
 - Doppler shift

Difficult to discriminate between models using the frequency spectrum

• **Total power P**_{tot} from each channel $\rightarrow k$ -spectrum

 $f_{\rm Dop} = \vec{k} \cdot \vec{v} \sim 1 {\rm MHz}$

 $f_{\rm turb} \sim 50 - 100 \, \rm kHz$

Synthetic comparisons presented for hybrid simulations

1. k-spectrum

- Shape
- Relative fluctuation level

2. *f*-spectrum (spectral peak < f >, width σ_f)

<u>Note</u>

- We use *f*-spectrum to compute *k*-spectrum
- *k*-spectrum allows for better discrimination between models

 \rightarrow will discuss *k*-spectrum first

k-spectra comparisons for strong ETG case: σ { ∇ *T*, ∇ *n*}, *q*, *s*-scan best matches *k*-spectrum shape

Experiment is not calibrated: rescale $S(k)^{exp}$ to minimize k-spectrum 'distance'

- Best match in *k*-spectrum shape found for $\sigma\{\nabla T, \nabla n\}, q, s$ -scan (via validation metric)
- Combination of (q, s)-scan results in improved k-spectrum agreement

Strong ETG: $P_e^{sim} \sim 170\% P_e^{exp}$

Weak ETG:

Experimental k-spectrum scaled by same constant as strong ETG (preserve fluctuation level ratio)

Strong ETG: $P_e^{sim} \sim 170\% P_e^{exp}$

Weak ETG:

- Experimental k-spectrum scaled by same constant as strong ETG (preserve fluctuation level ratio)
- Base sim (exp parameters): P_e ~ 0 underpredicts weak ETG fluct level

Strong ETG: $P_e^{sim} \sim 170\% P_e^{exp}$

Weak ETG:

- Experimental k-spectrum scaled by same constant as strong ETG (preserve fluctuation level ratio)
- Base sim (exp parameters): P_e ~ 0 underpredicts weak ETG fluct level
- $\sigma{\{\nabla T, \nabla n\}}$ -scan: $P_e \sim 80\% P_e^{exp}$
 - Matches k-spectrum shape
 - Close to match fluct. level ratio

Strong ETG: $P_e^{sim} \sim 170\% P_e^{exp}$

Weak ETG:

- Experimental k-spectrum scaled by same constant as strong ETG (preserve fluctuation level ratio)
- Base sim (exp parameters): P_e ~ 0 underpredicts weak ETG fluct level
- σ { ∇T , ∇n }-scan: $P_e \sim 80\% P_e^{exp}$
 - Matches k-spectrum shape
 - Close to match fluct. level ratio

→ Finite level of ETG, producing experimentally relevant P_e is needed to match k-spectra constrains

Found simulation conditions for strong & weak ETG case that agree with *k*-spectra constrains

NSTX-U

Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Synthetic *f*-spectrum reproduces spectral peak < f >, close to match spectral width σ_f for all channels

Can we explain electron thermal transport P_e ?

Can we explain the measured high-k fluctuation spectra?

Are measured fluctuations responsible for any thermal transport P_e ?

Discussion at Strong ETG

- <u>Ion-scale</u> turbulence is suppressed by ExB shear
- <u>e-scale</u> can explain P_e^{exp} , consistent with agreement in high-k f & k-spectra

Discussion at Strong ETG

- <u>Ion-scale</u> turbulence is suppressed by ExB shear
- <u>e-scale</u> can explain P_e^{exp} , consistent with agreement in high-k f & k-spectra

 \rightarrow e- scale turbulence (ETG) is likely responsible for P_e^{exp}

Discussion at Weak ETG

- <u>Ion scale</u> sim can bracket P_e^{exp}, extremely stiff transport
- Electron scale is active, can match P_e^{exp}

Is ion or e- scale turbulence responsible for P_e?

- k-spectra \rightarrow finite level of ETG is needed to match fluct. level ratio
- Ion thermal transport ~ neoclassical ightarrow suggests small ion scale turbulence level
- But e- scale alone cannot explain $P_e!! \rightarrow$ missing P_e could come from ion scales
- Both ion & e- scales ~ marginal \rightarrow cross-scale coupling? affecting P_{e} , not P_{i} ?

Discussion at Weak ETG

- <u>Ion scale</u> sim can bracket P_e^{exp}, extremely stiff transport
- <u>Electron scale</u> is active, can match P_e^{exp}

Is ion or e- scale turbulence responsible for P_e?

→ Probably a combination of ion scale (TEM) and e-scale turbulence (ETG) is responsible for P_e^{exp}
 → cross-scale interactions likely important

Conclusions and next steps

What we have done

- Implemented a synthetic high-k diagnostic, and used it to discriminate between gyrokinetic turbulence models and plasma conditions.
- Validated local NL gyrokinetic simulations against experimental power balance and high-k turbulence measurements in the core-gradient region of an NSTX NBI-heated H-mode.
 - **Strong ETG**: ETG is mechanism responsible for P_e.
 - Weak ETG: Combination of ETG/TEM responsible for P_e (+ cross-scale coupling?).

Next Steps

- Multiscale simulation of NSTX H-mode? + synthetic diagnostic?
- Apply reduced transport models (TGLF).
- Quantitative predictions for new high-k, 3D/toroidal effects.

Questions

Input Parameters into Nonlinear Gyrokinetic Simulations Presented

	t=398 t	t = 565			
r/a	0.71	0.68	R _o /a	1.52	1.59
a [m]	0.6012	0.596	SHIFT =dR ₀ /dr	-0.3	-0.355
n _e [10^19 m-3]	4.27	3.43	KAPPA = κ	2.11	1.979
T _e [keV]	0.39	0.401	s _k =rdln(κ)/dr	0.15	0.19
a/L _{ne}	1.005	4.06	DELTA = δ	0.25	0.168
a/L _{Te}	3.36	4.51	s _δ =rd(δ)/dr	0.32	0.32
β_e^{unit}	0.0027	0.003	Μ	0.2965	0.407
a/L _{nD}	1.497	4.08	γ_{E}	0.126	0.1646
a/L _{Ti}	2.96	3.09	γ _p	1.036	1.1558
T _i /T _e	1.13	1.39	ρ.	0.003	0.0035
n _D /n _e	0.785030	0.80371	λ _D /a	0.000037	0.0000426
n _c /n _e	0.035828	0.032715	c _s /a (10 ⁵ s-1)	4.4	2.35
a/L _{nC}	-0.87	4.08	Qe (gB)	3.82	0.0436
a/L _{TC}	2.96	3.09	Qi (gB)	0.018	0.0003
Z _{eff}	1.95	1.84	Bt_loc [T]	-0.35	-0.35
nu _{ei} (a/c _s)	1.38	1.03	c _s [m/s]	2.10 ⁵	2.10 ⁵
q	3.79	3.07	$oldsymbol{\Omega}_{ ext{i}}$ [1/s]	3.5*10 ⁷	3.5*10 ⁷
S	1.8	2.346			

NSTX-U

Discharge conditions

Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Linear Stability Strong ETG

Linear Stability Weak ETG

NSTX-U

Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Ion scale NL simulation Strong ETG

Total electron thermal transport budget strong ETG

Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Total electron thermal transport budget weak ETG

Electron scale and hybrid simulation synthetic f-spectra

Comparisons between $Q_e \& Q_i$ for $\mathbf{v}_{ii} = 0$ and $\mathbf{v}_{ii} = \mathbf{v}_{ii}^{exp}$

- GYRO simulations of NSTX H mode plasma
- Compare ion scale simulation output when ion-ion collisions are present and when they are not
 - Add collisional damping on ZF
 - Expected to be important close to marginality even more in high v_{ee} (GYRO NU_EI (v_{ee}) ~ 1)
- a/Ln is scaled down 1 sigma from experimental value.
 Performed scan in a/L_{Te}
- GYRO predicts 10 X Q_e^{exp} & Q_i^{exp} for a/L_{Te} (+ 1σ), a/L_{ne} (-1σ)

Input turbulence drives $a/LTe^{exp}=4.5128$ $\sigma_{\nabla Te} = 20\%$ $a/Lne^{exp}=4.0576$ $\sigma_{\nabla ne} = 30\%$

Title here

Column 1

Column 2

Intro

- First level
 - Second level
 - Third level
 - You really shouldn't use this level the font is probably too small

Here are the official NSTX-U icons / logos

NSTX Upgrade NSTX Upgrade NSTX-U NSTX-U National Spherical Torus eXperiment Upgrade **National Spherical Torus eXperiment Upgrade**

NSTX-U

Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Instructions for editing bottom text banner

Go to View, Slide Master, then select top-most slide - Edit the text box (meeting, title, author, date) at the bottom of the page Then close Master View plate new v1.pptx - Microsoft PowerPoi Colors -✓ Title Aa Rename A Fonts -Page Slide Close Setup Orientation + Master View Effects * Click to edit Master title style ck to edit Master text style hid level Click to edit Master title style GENERGY ST MNSTX-U Click to edit Master text styles - Second level Third level Click to edit Master title style Fourth level Second level - Tractional - Fourth level - Fourth level » Fifth level Click to edit Master title sty - First lovel - Second lovel - The first lovel --Sect and -Sect and -Sect and -Sect and -Sect and -Sect and Click to edit Master title style - Desired level - Trippleval - Trippleval - Trippleval **NSTX-U** Meeting name, presentation title, author name, date

Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019