

Validation of Gyrokinetic Simulations in NSTX via Comparisons of Simulated Turbulence with a New High-k Scattering Synthetic Diagnostic

J. Ruiz Ruiz¹

W. Guttenfelder², N. Howard¹, N. F. Loureiro¹, A. E. White¹, J. Candy⁷, Y. Ren², S.M. Kaye², B. P. LeBlanc², E. Mazzucato², K.C. Lee³, C.W. Domier⁴, D. R. Smith⁵, H. Yuh⁶ 1. MIT 2. PPPL 3. NFRI 4. UC Davis 5. U Wisconsin 6. Nova Photonics, Inc. 7. General Atomics

> Interview for postdoctoral position, PPPL, Princeton NJ January 31, 2019

Alcator C-Mod

Outline

- Motivation
- NSTX H-mode discharge under study
- High-k Scattering at NSTX
- Numerical GYRO simulations needed
- Electron heat flux comparisons
- Synthetic comparisons
	- Synthetic diagnostic description
	- Validation workflow
	- k-spectra and f-spectra comparisons

Electron Thermal Transport P_{α} is Dominant Heat Loss Mechanism is Spherical Tokamak NBI-heated H-modes

- Ion thermal transport (P_i) observed close to neoclassical levels in NSTX NBI heated H-modes, due to *suppression of ion scale turbulence by ExB shear and strong plasma shaping* [*cf. Kaye NF 2007*].
- **Electron thermal transport is always anomalous**
- This work will focus on electron thermal transport P_e: Compare experimental heat fluxes and measured high-k turbulence spectra to validate extensive set of nonlinear gyrokinetic simulations (GYRO):
	- $-$ **lon scale:** $k_{\theta} \rho_s < 1$
	- $-$ **Electron scale:** $k_{\theta} \rho_s > 1$

 $\rho_{\rm s}$ ion sound gyro radius

Validate NL GYRO simulation in an NSTX NBI-heated H-mode featuring strong and weak ETG conditions 8 PNB (MW)

6

- Controlled I_p ramp-down separates two steady discharge phases; little MHD activity.
- Local increase in equilibrium density gradient $|\nabla n|$ modifies ETG drive from strong to weak, consistent with changes in measured high-k turbulence [*]
- P_e [MW] and turbulence levels very sensitive to $\nabla\sf{T}_{\sf{e}}$, $\nabla\sf{n}_{\sf{e}}$ [*]
	- ∇**Te**: ETG drive
	- ∇**ne**: ETG stabilizing mechanism

[*] Ruiz Ruiz PoP 2015

Use a high-k scattering diagnostic to probe electron scale turbulence on NSTX

ONSTX-U

⁵ Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Use a high-k scattering diagnostic to probe electron scale turbulence on NSTX

2 $\sqrt{2}$ $\left(\frac{\delta n}{n}\right)$ ^δ*n* $P_{s} \propto$ • Scattered power density ' spherical *n* \setminus \int or
or
Nacuum vessel mirror • Gaussian microwave probe beam 1.5 $- f = 280 \text{ GHz}$ (>> f_{pe} , f_{ce}) Ch $=$ **k**_{turb} + • Ray tracing to determines \vec{k}_{turb} ω _s = ω _{turb} + ω _i \widehat{E} $\overline{0}$ -0.5 • Scattering system is *toroidally* localized [*] \rightarrow We model a 2D synthetic diagnostic -1 *Archosed flux surface* -1.5 Probe beam • **Preview**: Synthetic high-k diagnostic will require use of **hybrid scale** simulations (~ big-box e- scale simulations. Traditional e- scale simulations lack numerical k- resolution) $X(m)$ View from top of NSTX

[*] Mazzucato PoP 2003, Mazzucato NF 2006

ONSTX-U

0

Compare electron thermal power P_e to all simulations; high-k turbulence only to hybrid simulation

- **Electron thermal power P**_e (TRANSP) comparisons via sensitivity scans of GYRO simulations within uncertainties
- **High-k turbulence spectra** comparisons via synthetic diagnostic
	- f-spectrum (spectral peak $\langle f \rangle$, width σ_f)
	- k -spectrum shape
	- **Relative fluctuation level**
- Will NOT compare Absolute fluctuation level (diagnostic not absolutely calibrated)

ion scale hybrid scale

Compare electron thermal power P_e to all simulations; high-k turbulence only to hybrid simulation

⁸ Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Main questions we aim to answer with this validation effort

Can we explain electron thermal transport P_{α} ?

Can we explain the measured high-k fluctuation spectra?

Are measured fluctuations responsible for any thermal transport P_{α} ?

Can we explain electron thermal transport P_{α} ?

Can we explain the measured high-k fluctuation spectra?

Are measured fluctuations responsible for any thermal transport P_{α} ?

 \rightarrow Use gyrokinetic simulation and a synthetic diagnostic to constrain turbulence model

ODNSTX-U

¹⁰ Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Numerical resolution details of GYRO ion scale and hybrid scale simulations

- **Ion scale** simulation only simulates ion scale turbulence ($k_{\theta} \rho_s \leq 1$)
- **Hybrid scale** simulation contain same physics as standard e- scale simulation (ETG), but different wavenumber resolution for synthetic diagnostic deployment
- Experimental profiles used as input
	- Local simulations performed at scattering location (r/a ~0.7, R~135 cm).
	- 3 kinetic species, D, C, e $(Z_{\text{eff}}$ ~1.85-1.95)
	- Electromagnetic: A_{\parallel} +B_{II}, β_e ~ 0.3 %.
	- Collisions ($v_{\text{ei}} \sim 1 \text{ c_s/a}$).
	- ExB shear ($\gamma_{\rm E}$ ~0.13-0.16 c_s/a) + parallel flow shear ($\gamma_{\rm p}$ ~ 1-1.2 c_s/a)
	- Fixed boundary conditions (radial buffer region).

Wavenumber grid from standard e- scale simulation is too coarse to resolve measurement k

 $*$ max $\mathbf{k}_{\theta} \mathbf{\rho}_{\mathbf{s}}$ is different for high and low ETG cases

ONSTX-U

Flux comparisons via sensitivity scans maximizing thermal transport P_e

Weak ETG condition: ion scale simulation can bracket $P_{\rm e}$ within error bars, hybrid scale can match P_{ρ}

Ion scale sim

- Scans performed for scaled $-\sigma(\nabla n)$
- ∇ T−scans show extremely stiff P_e (TEM), close to marginal (Dimits shift regime)

Weak ETG condition: ion scale simulation can bracket $P_{\rm e}$ within error bars, hybrid scale can match P_{ρ}

Ion scale sim

- Scans performed for scaled $-\sigma(\nabla n)$
- ∇ T−scans show extremely stiff P_e (TEM), close to marginal (Dimits shift regime)

Weak ETG condition: ion scale simulation can bracket P_{α} within error bars, hybrid scale can match P_{α}

Weak ETG condition: ion scale simulation can bracket P_{ρ} within error bars, hybrid scale can match P_{α}

Weak ETG condition: ion scale simulation can bracket P_{ρ} within error bars, hybrid scale can match P_{α}

Weak ETG ion thermal transport: ion scale simulation brackets experimental P_i

- Electron thermal transport P_e P_{e} (i scale) ~ 10 X $\mathsf{P}_{\mathrm{e}}^{\mathrm{exp}}$ for a/L_{Te} > 5
- Ion thermal transport P_i $P_i(i \text{ scale}) \sim 10 \text{ X } P_i^{\text{exp}}$ for a/L_{Te} > 5
- P_i overprediction conflicts with neoclassical transport levels \sim 0.3 MW
- è *Suggest at most a small ion-scale turbulence level*
- Negligible ion thermal transport from escales

Weak ETG ion thermal transport: ion scale simulation brackets experimental P_i

- Electron thermal transport P_{α} P_{e} (i scale) ~ 10 X $\mathsf{P}_{\mathrm{e}}^{\mathrm{exp}}$ for a/L_{Te} > 5
- Ion thermal transport P_i $P_i(i \text{ scale}) \sim 10 \text{ X } P_i^{\text{exp}}$ for a/L_{Te} > 5
- P_i overprediction conflicts with neoclassical transport levels \sim 0.3 MW
- è *Suggest at most a small ion-scale*

turbulence level

Weak ETG condition

- \mathcal{A} lave etiff TEM transport from \mathbf{y} or \mathbf{c} P_e , P_i (*i* scale) \rightarrow 10 X P_e^{exp} , P_i^{exp} • *Ion scale turbulence displays stiff TEM transport:*
- **GYRO overprediction conflicts with neoclassical P_i**
- *Electron scale turbulence can match Pe*

What is the responsible transport mechanism for the weak ETG condition?

Are we matching simulations for the good reasons?

Which simulation is most experimentally meaningful?

 \rightarrow Constrain models using a synthetic diagnostic for high-k scattering

Synthetic diagnostic is applied to hybrid simulation for direct comparison with measured high-k fluctuations

 $\delta \widehat{n}_e^{syn}(t) = \int \delta n_e(\vec{r},t) \psi_{\rm R}(\vec{r}) e^{-i\vec{k}_0 \cdot \vec{r}} d^3\vec{r}$

- Gaussian filter in space is applied to raw GYRO density fluct. amplitude
- Obtain a filtered time series of density fluctuations $\delta \widehat{n}_e^{syn}(t)$ (analyzed the same way as experiment)
- New implementation in real space differs from past work (Poli PoP 2010)

Compare total power P_{tot} , spectral peak $\lt f$ > and spectral width σ_f in a prescribed frequency band

-spectrum is determined by turbulence characteristics, -resolution and Doppler shift

Spectral peak $\leq f \geq$ is dominated by Doppler Shift

- Not a critical constrain on simulation model
- $f_{\text{turb}} \ll f_{\text{Dop}} \qquad f_{\text{Dop}} = \vec{k} \cdot \vec{v} \sim 1 \text{MHz}$ $f_{\text{turb}} \sim 50 - 100 \text{ kHz}$
- **Spectral width** σ_f determined by combination of:
	- Turbulence spectrum in plasma frame
	- k -resolution of the high-k diagnostic
	- k -grid resolution of the simulation
	- Doppler shift

-spectrum is determined by turbulence characteristics, -resolution and Doppler shift

 $f_{\text{turb}} \ll f_{\text{Dop}}$ $f_{\text{Dop}} = \vec{k} \cdot \vec{v} \sim 1$ MHz

 $f_{\text{turb}} \sim 50 - 100 \text{ kHz}$

Spectral peak $\leq f >$ is dominated by Doppler Shift

Not a critical constrain on simulation model

- **Spectral width** σ_f determined by combination of:
	- **Turbulence spectrum in plasma frame**
	- k -resolution of the high-k diagnostic
	- k -grid resolution of the simulation
	- Doppler shift

Difficult to discriminate between models using the frequency spectrum

-spectrum is determined by turbulence characteristics, -resolution and Doppler shift

 $f_{\text{turb}} \ll f_{\text{Dop}}$ $f_{\text{Dop}} = \vec{k} \cdot \vec{v} \sim 1$ MHz

 $f_{turb} ~ 50 - 100$ kHz

Spectral peak $\leq f >$ is dominated by Doppler Shift

Not a critical constrain on simulation model

- **Spectral width** σ_f determined by combination of:
	- **Turbulence spectrum in plasma frame**
	- k -resolution of the high-k diagnostic
	- k -grid resolution of the simulation
	- Doppler shift

Difficult to discriminate between models using the frequency spectrum

<u>Total power P_{tot}</u> from each channel \rightarrow k-spectrum

Synthetic comparisons presented for hybrid simulations

- 1. k -spectrum
	- **Shape**
	- Relative fluctuation level

2. f-spectrum (spectral peak $\lt f$ >, width σ_f)

Note

- We use f -spectrum to compute k -spectrum
- k -spectrum allows for better discrimination between models

 \rightarrow will discuss k-spectrum first

-spectra comparisons for strong ETG case: $\sigma \{V}$, ∇n , q, s-scan best matches k-spectrum shape

Experiment is not calibrated: rescale $S(k)^{\exp{(-k)}}$ to minimize k-spectrum 'distance'

- Best match in *k*-spectrum shape found for $\sigma\{\nabla T,\nabla n\}$, q, s-scan (via validation metric)
- Combination of (q, s) -scan results in improved k-spectrum agreement

 $\textbf{Strong ETG:} \ \mathsf{P}_{\mathrm{e}}^{\ \text{sim}} \sim \text{170\%} \ \mathsf{P}_{\mathrm{e}}^{\ \text{exp}}$

Weak ETG:

Experimental k -spectrum $\mathbf{\hat{P}}$ scaled by same constant as strong ETG (preserve fluctuation level ratio)

 $\textbf{Strong ETG:} \ \mathsf{P}_{\mathrm{e}}^{\ \text{sim}} \sim \text{170\%} \ \mathsf{P}_{\mathrm{e}}^{\ \text{exp}}$

Weak ETG:

- Experimental k -spectrum $\mathbf{\hat{P}}$ scaled by same constant as strong ETG (preserve fluctuation level ratio)
- **Base sim** (exp parameters): $P_e \sim 0$ underpredicts weak ETG fluct level

 $\textbf{Strong ETG:} \ \mathsf{P}_{\mathrm{e}}^{\ \text{sim}} \sim \text{170\%} \ \mathsf{P}_{\mathrm{e}}^{\ \text{exp}}$

Weak ETG:

- Experimental k -spectrum $\mathbf{\hat{P}}$ scaled by same constant as strong ETG (preserve fluctuation level ratio)
- **Base sim** (exp parameters): $P_e \sim 0$ underpredicts weak ETG fluct level
- $\sigma \{\nabla T, \nabla n\}$ -scan: $P_e \sim 80\% \ P_e^{exp}$
	- Matches k -spectrum shape
	- Close to match fluct. level ratio

 $\textbf{Strong ETG:} \ \mathsf{P}_{\mathrm{e}}^{\ \text{sim}} \sim \text{170\%} \ \mathsf{P}_{\mathrm{e}}^{\ \text{exp}}$

Weak ETG:

- Experimental k -spectrum $\mathbf{\hat{P}}$ scaled by same constant as strong ETG (preserve fluctuation level ratio)
- **Base sim** (exp parameters): $P_e \sim 0$ underpredicts weak ETG fluct level
- $\sigma \{\nabla T, \nabla n\}$ -scan: $P_e \sim 80\% \ P_e^{exp}$
	- Matches k -spectrum shape
	- Close to match fluct. level ratio

è *Finite level of ETG, producing experimentally relevant P_e is needed to match k*-spectra constrains

Found simulation conditions for strong & weak ETG case that agree with k -spectra constrains

⁴⁰ Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Synthetic f-spectrum reproduces spectral peak $\lt f >$, close to match spectral width σ_f for all channels

Can we explain electron thermal transport P_{α} ?

Can we explain the measured high-k fluctuation spectra?

Are measured fluctuations responsible for any thermal transport P_{α} ?

Discussion at Strong ETG

- Ion-scale turbulence is suppressed by ExB shear
- e- scale can explain $\mathsf{P}_{\mathrm{e}}^{\mathrm{exp}}$, consistent with agreement in high-k f & k-spectra

Discussion at Strong ETG

- Ion-scale turbulence is suppressed by ExB shear
- e- scale can explain $\mathsf{P}_{\mathrm{e}}^{\mathrm{exp}}$, consistent with agreement in high-k f & k-spectra

→ e- scale turbulence (ETG) is likely responsible for P_e^{exp}

Discussion at Weak ETG

- lon scale sim can bracket $\mathsf{P}_{\mathrm{e}}^{\mathrm{exp}}$, extremely stiff transport
- Electron scale is active, can match $\mathsf{P_{e}}^{\mathsf{exp}}$

Is ion or e- scale turbulence responsible for P₂?

- k -spectra → finite level of ETG is needed to match fluct. level ratio
- *Ion thermal transport ~ neoclassical* \rightarrow *suggests small ion scale turbulence level*
- *But e- scale alone cannot explain P_e!! → missing P_e could come from ion scales*
- Both ion & e- scales ∼ marginal → cross-scale coupling? affecting P_e, not P_i?

Discussion at Weak ETG

- lon scale sim can bracket $\mathsf{P}_{\mathrm{e}}^{\mathrm{exp}}$, extremely stiff transport
- Electron scale is active, can match $\mathsf{P_{e}}^{\mathsf{exp}}$

Is ion or e- scale turbulence responsible for P_e?

- | → Probably a combination of ion scale (TEM) and e-- *Ion thermal transport ~ neoclassical*^è *finite ion scale turb. could contribute to Pe* **but a** *scale turbulence (ETG) is responsible for P_e exp
 but a <i>s cale turbulence (ETG) is responsible for P_e* - *Both ion & e- scale close to marginal (~ Dimits shift regime)* à *cross-scale coupling?* è*cross-scale interactions likely important*

exp

Conclusions and next steps

What we have done

- Implemented a synthetic high-k diagnostic, and used it to discriminate between gyrokinetic turbulence models and plasma conditions.
- Validated local NL gyrokinetic simulations against experimental power balance and high-k turbulence measurements in the core-gradient region of an NSTX NBI-heated H-mode.
	- **Strong ETG**: ETG is mechanism responsible for P_e.
	- **Weak ETG**: Combination of ETG/TEM responsible for P_e (+ cross-scale coupling?).

Next Steps

- Multiscale simulation of NSTX H-mode? + synthetic diagnostic?
- Apply reduced transport models (TGLF).
- Quantitative predictions for new high-k, 3D/toroidal effects.

Questions

Input Parameters into Nonlinear Gyrokinetic Simulations Presented

ONSTX-U

Discharge conditions

ONSTX-U

⁵⁰ Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Linear Stability Strong ETG

Linear Stability Weak ETG

ONSTX-U

⁵² Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Ion scale NL simulation Strong ETG

Total electron thermal transport budget strong ETG

⁵⁴ Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Total electron thermal transport budget weak ETG

Electron scale and hybrid simulation synthetic f-spectra

Comparisons between Q_e & Q_i for $v_{ii} = 0$ and $v_{ii} = v_{ii}^{exp}$

- GYRO simulations of NSTX H mode plasma
- Compare ion scale simulation output when ion-ion collisions are present and when they are not
	- o Add collisional damping on ZF
	- \circ Expected to be important close to marginality $$ even more in high v_{ee} (GYRO NU_EI (v_{ee}) ~ 1)
- a/Ln is scaled down 1 sigma from experimental value. Performed scan in $a/L_{T_{\rm eq}}$
- GYRO predicts 10 X Q_e^{exp} & Q_i^{exp} for a/L_{Te} (+ 1 σ), a/L_{ne} (-1 σ)

Input turbulence drives a/LTeexp=4.5128 $\sigma_{\triangledown_{\mathsf{Te}}}$ = 20% **a/Lneexp=4.0576** σ_{∇ ne⁼ 30%

Title here

-
- Column 1 Column 2

Intro

- First level
	- Second level
		- Third level
			- You really shouldn't use this level the font is probably too small

Here are the official NSTX-U icons / logos

ODNSTX Upgrade ODNSTX Upgrade ODNSTX-U ODNSTX-U **CO National Spherical Torus**
 CO eXperiment Upgrade Whational Spherical Torus eXperiment Upgrade

ONSTX-U

⁶⁰ Interview for postdoctoral position, PPPL, Princeton NJ, January 31, 2019

Instructions for editing bottom text banner

• Go to View, Slide Master, then select top-most slide – Edit the text box (meeting, title, author, date) at the bottom of the page **Then close Master View** new v1.pptx - Microsoft PowerPoi

