Mitigation of anomalous electron energy transport via control of sub-cyclotron AEs in STs

Motivation

- Beam-driven CAEs/GAEs have been excited in NSTX(-U), MAST, DIII-D, and have been experimentally linked to anomalous *T_e* flattening in NSTX
- Understanding conditions for excitation is vital to predict and control effects on plasma confinement

Completed Work

- Simulations of CAE/GAE excitation performed for wide range of NBI parameters provides wealth of information on stability
- Derived simple analytic conditions for CAE/GAE stability
 - Agrees with spectra in large NSTX experimental database
 - Explains GAE suppression on NSTX-U with off-axis beam
 - Indicates new avenues for control with multi-beam distributions

Mitigation of anomalous electron energy transport via control of sub-cyclotron AEs in STs

Remaining Work

- Simulations of CAE stabilization with multi-beam distributions
- Simulations of energy channeling due to multiple modes
 - Single CAE case studied by Belova et al. in 2015 PRL

Main Takeaways

- Mechanisms for control of CAEs/GAEs are needed to study and avoid anomalous electron energy transport in STs
- Detailed theoretical studies have improved our understanding of instability conditions, providing new strategies for stabilizing these modes with multi-beam distributions

