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First measurement of sawtooth oscillations 

• ST Tokamak:  Te = 800 eV , ne = .5 x 1014 
 

• Quasi-periodic (1,1) oscillations in central temperature 
 

• Phase inverted around radius where q=1 surface was thought to be 
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Oscillations were explained shortly afterwards by Kadomtsev 

Kadomtsev,, B. Fiz. Plazmy 1 710 (1975) [Sov. J. Plasma Phys. 1 389 (1976)  

• Current peaks and q0 drops below 1 due 
to resistive diffusion with peaked 
temperature profile 
 
 

• When q0 < 1,  (1,1) resistive kink 
instability begins to grow. 
 
 

• After several e-folding times, complete 
reconnection restores q0 to 1 
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 M3D-C1 code used to simulate Kadomtsev model 
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Blue terms are 2-fluid terms.  Also, now have impurity and pellet models for 
disruption mitigation.   NOT reduced MHD. 
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M3D-C1 finds ST results consistent with Kadomtsev Reconnection 
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Repeating Sawtooth Cycle 
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• q0 drops below 1 with 
growth rate  -1 

 

• Resistive kink becomes 
unstable with growth 
rate 1/3 
 

• Mode takes a few         
e-folding times to grow 
and reconnect 
 

• Typically  0.95 < q0 < 1.0 
for S  105-106, low- 
 

HOWEVER: 
 
• At higher temperatures, 

(smaller ) q0 does not 
drop substantially 
before kink mode sets in 
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High-Te  plasmas show much faster crash times than  1/3 

• TFTR electron temperature crash time is very fast,  100 s, 
even though Te is over 10 times greater than Te in  the ST  

• Sawtooth period and fast crash times on TFTR and other large 
tokamaks apparently not consistent with Kadomtsev model 



Many theory papers have offered explanations for fast crash times 

 

• With the Kadomtsev model in mind, many authors have “explained” fast 
crashes as being due to fast magnetic reconnection: 
– Anomalous electron viscosity[1] 
– Two-fluid effects [2-4] 
– High-n ballooning modes [5] 
– Plasmoids [6] 
– Plasma compressibility [7] 

• However, all these studies start with a unstable plasma with q0 << 1 
– How did the plasma get into this unstable state? 

 
 
 
[1] Aydemir, A. Y., Phys. Fluids B 2 2135 (1990) 
[2] Aydemir, A. Y., Phys. Fluids B 4 3469 (1992) 
[3] Yu, Q., Gunter, S., and Lackner, K., Nucl. Fusion 55 
113008 (2015) 
[4] Beidler, M., Cassak, P., Jardin, S., Ferraro, N., Plasma 
Phys. and Control. Fusion 59 025007 (2017) 
[5] Nishimura, Y., Callen, J. D., Hegna, C., Phys. Plasma 6 
4685 (1999) 
[6] Gunter, S., Yu, Q., Lackner, K., et al. Plasma Phys. 
Control. Fusion 57 104017 (2015) 
[7] Sugiyama, L. Phys. Plasmas 21, 022510 (2014) 
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From Ref. [2] 



An alternative to Kadomtsev model is the interchange model 
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• First introduced by Wesson [8] (coined the name quasi-interchange) 
 

• It has now been shown analytically [9,10] and numerically [9,11,12] that a 
tokamak with q0 slightly exceeding 1 and with very low central shear is 
unstable to a  pressure-driven (1,1) interchange mode. 
 

• We now know that this (1,1) interchange mode will saturate at a low 
amplitude, producing a (1,1) flow field that partially flattens the pressure. 

[8] J. Wesson, PPCF 28 243 (1986)  [11] S. Jardin, N. Ferraro, I. Krebs, PRL 115, 215001 (2015) 
[9] J. Hastie and T. Hender,  NF 28 585 (1988)  [12] I. Krebs, S. Jardin, S. Gunter, et al, PP 24, 102511 (2017)  
[10] F. Waelbroeck and R. Hazeline, PF 31 1217 (1988) 

 = 0o
 
  = 90o

 
  = 180o

 
  =270o
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1,1 1,1R U   V

• This (1,1) flow field found in M3D-C1 simulations [11,12] 
agrees with the linear eigenfunction found in [9] 

1,1U



(1,1) flow field produces a dynamo voltage that opposes drop in q0  

1Jardin, Ferraro, Krebs, PRL , 21 215001 (2015) 
2Krebs, Jardin, Guenter, et al, Phys. Plasmas 24 102511 (2017) 9 

1 11,1 ,
2

LV
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
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These 2 large terms must almost cancel 

1,1potential  at one toroidal plane

• Perturbed electric potential 1,1 very similar 
in form to perturbed stream function U1,1 

 
 

• Velocity field also perturbs the pressure and 
creates a B1,1 magnetic field: 

 
 

• Perturbed electric potential and magnetic 
field produce a counter loop-voltage in 
center, keeping q0 from dropping below 1: 

1,1 1,1 0,0 0,0 1,1

1,1 0 1,1
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Consider the terms in the parallel  Ohm’s law 
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• White is zero, blue is negative.     
• Center region is negative at all toroidal 

locations indicating a (0,0) voltage generated 
non-linearly  that opposes the drop in q0 

• This mechanism keeps q0 = 1 +  as shown on 
next slide 

In 3D, the  B1,1 1,1 term leads to an 
effective voltage along the field in center 



The V0,0 voltage from B1,11,1 keeps q0 > 1 
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Large region in center 
with q = 1+  

• Since the interchange instability drive and hence U1,1 is strongest 
at q0 = 1+, this provides a natural feedback mechanism that 
keeps q0 just above 1.0 

Results from long-time M3D-C1 simulation 
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Long time non-sawtoothing nonlinear simulation 

• We start with a standard, 
non-sawtoothing, hybrid 
case with q0=1 studied in [1] 
 

NEW: 
 

• What happens if we apply 
additional central heating so 
the central temperature 
continues to peak? 

[1] Case-h in Krebs, et al, Phys. Plasmas. (2017) 

Case h:  non-sawtoothing discharge 

Original Case-h obtains stationary 
state with large (1,1) velocity field, 
q0=1 with no shear in center. 

12 



t = 110,000 t = 129,000 
Run CMOD-04 

Increased heating leads to periodic oscillations in Te(0)  

6,000 A ~ 1.5 ms  
BT = 1 T 
R0 = 3.2 m 
n0 = 4x1019 
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Linear Eigenfunctions of n=1-9 

What causes Te oscillations (and crash)?    Consider linear stability 
of modes with n=1-9 in circular cylinder geometry with M3D-C1 
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Initiate a NL M3D-C1 run with one of these equilibria 

Assume there are sources to maintain 
equilibrium profiles. (eqsubtract = 1) 

1500 A 2000 A 2500 A 
3000 A 

Poincare 

Velocity 
stream  
function 

09a: 22,23,25,27:  32 planes 
15 



Central pressure flattens without affecting region with q > 1 

Run09a: 31 
16 



Crash has very little dependence on || 

09c, 09e:  32 planes 

55 10    0  
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Next, switch to toroidal geometry and start a fully nonlinear 
calculation which is unstable only to the n=1 and n=2 modes 

stable 

Run16 
18 

Initiate nonlinear run 
from this equilibrium 
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Clearly shows fast crash due to higher-n modes 
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Note similarities with published TFTR crash data 



The Sawtooth Cycle 

stable 

A B 

C 

A. Fast crash when (2,2) ideal stability boundary is crossed.   Other modes 
also excited by steep gradients that form in inner shear-free region 

B. At low p1, plasma becomes axisymmetric, surfaces reform, p1 begins 
to increase due to heating, and q0 drops due to resistive diffusion 

C. As (1,1) stability boundary is crossed, dynamo action works to increase 
q0 as p1 continues to increase due to heating. 
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• q0 is about 1.8 times higher 
than if one assumed                         
using measured profiles (both 
Spitzer and neoclassical) 
 

• The lowest q(a) case, instead of 
exhibiting a parabolic current 
profile, observed very low 
shear (flat current) near q=1.  
 

• “Strong confirmation … that 
magnetic fluctuations within 
the plasma prevent the Kruskal-
Shafranov limit from being 
exceeded” 

3/2

eJ T

q0 = 1 with low central shear was observed on first measurement of q0 



( ) T

P

d
q RB

R
 



 = const. 

• The q-profiles is very difficult to measure experimentally 
• Must take the limit as contour size  0, p  0 
• Need to account for intrinsic electric field and ellipticity 
• Is it possible that these early measurements had larger 

error bars than what was realized at the time? 
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What about early measurements that show q0 << 1 ? 

• q0 changed from 0.7 to 0.8 in TFTR [1] 
• 8% change from 0.77 on TEXTOR [2] 
• q0 = 0.7  0.05 and increasing with edge q on TEXT [3] 
• q0 ranges from 0.7 to 0.85 throughout the sawtooth cycle on JET [4] 

[1] Yamada, M., Levinton, F., Pomphrey, N., et al Phys.Plasmas 1 3269 (1994) 
[2] Soltwisch, H., Rev. Sci. Instrum, 59, 1599 (1988) 
[3] West, W. P., Thomas, D. M., DeGrassie, J.S. et al Phys.Rev. Lett. 58, 2758 (1987) 
[4] Wolf, R. C., Orourke, J., Edwards, A. W., et al , Nucl. Fusion 33, 663 (1993) 



• Wroblewski and Huang quote a value of q0  very near unity in TEXT for several discharges 
with differing edge-q and infer a low shear central region, especially at low edge-q [1,2] 

• Weisen used resonant Alfven waves to deduce that TCA had a time averaged q profile 
with a flat central region with q0 close to unity[3] 

• Gill analyzed X-ray emission in JET when an injected pellet crosses the q=1 surface and 
found that the magnetic shear, dq/dr, interior to the q=1 surface was very low.[4] 

• Wroblewski reports that q0 in DIII-D is close to unity and the increase during the 
sawtooth crash is of order of the measurement error, 0.05[5] 

• Analysis of BAE modes during a sawtooth crash on TORE SUPRE imply that q0 is normally 
slightly above unity after the sawtooth crash, and decreasing to unity[6] 

• A recent study on KSTAR , supported by very high accuracy MSE measurements and 
supplemental MHD analysis concluded that q0 was  1 in sawtoothing discharges with 
relative accuracy +/- 0.03 and with compelling evidence that it is slightly above 1 after 
the crash.[7] 

More recent experimental evidence is that q0 
stays near 1 during the entire sawtooth cycle.  

[1] Wroblewski, D., Huang, L, Moos, H. W. it et al Phys. Rev. Lett. 61, 1724 (1988) 
[2] Huang, L. K., Finkenthal, M.,Wroblewski, D., Phys. Fluids B. 2 809 (1990 
[3] Weisen, H., Borg, G., Joye, B., et al, Phys. Rev. Lett. 62, 434 (1989) 
[4] Gill, R., Edwards, A., Weller, A., Nucl. Fusion 29 821 (1989) 
[5] Wroblewski, D., and Snider, R., Phys. Rev. Lett. 71, 859 (1993) 
[6] Amador, C', Sabot, R., Garbet, X., et al Nucl. Fusion 58, 016010 (2018)  
[7] ] Nam, Y. B., Ko, J. S., Choe, G. H. et al Nucl. Fusion 58 066009 (2018) 24 



Summary and Future Directions 

• Sawteeth in low temperature, low- plasmas (like ST) can be explained 
by the Kadomtsev model 
 

• Sawteeth in high-temperature, high- tokamak discharges are caused 
by m=n > 1 modes causing turbulent convection with q  1 in interior 
 

• The n=m=1 mode saturates at a low amplitude, and is responsible for 
keeping q  1 in the center with very low shear  … not for the crash. 
 

• The rapid onset and fast crash time is caused by many ideal-MHD 
modes whose rapid growth rates are sensitive functions of q0 and p0 

 
• Since q0  1 throughout the cycle, it is easy to see how (1,1) snakes can 

co-exist with sawteeth 
 

• Next Step:  Can this picture of sawteeth be used to explain “monster 
sawteeth” and RF sawtooth stabilization/destabilization? 

25 



Extra Slides 
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Some Puzzles explained 

1. q-profile changes very little during sawtooth crash 
• Central q profile is always just above 1 and flat 

 

2. The sawtooth collapse is usually precursorless and very rapid 
• Sudden onset caused by crossing an ideal MHD stability boundary 
• Steep gradients from (2,2) mode excite higher (n,n) modes 

 

3. How to explain rapid impurity penetration during the sawtooth collapse 
• The collapse and flattening of the Te profile is caused by convective motion 

generated by many mid to high-n ideal instabilities 
• This same convective motion will transport and mix impurities. 

 

4. Density snakes persist for many sawteeth 
• Large q=1 shearfree region allows snakes 

27 
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For constant-q pressure drop:   3% intrinsic uncertainty in MSE 

q0 = 1.008  before & after Constant- flattening Large change in central J Measure Bz/BT at 6 R-values 

BZ/BT along the 6 vertical lines Midplane values vs R 

 
1

0

1

0.983 (before)

= 0.974 (after)

MA

Z T

R RMA

q B B
R R





 
   



q0 from synthetic 
MSE measurements 
gives 2-3% error  



Convergence Study in # of Toroidal Elements 

Results very similar but not identical (stochastic field lines) 

Error  1/N4 

Run09a, Run09b 
29 



C-P Cylinder, peaked pressure 
C-B Cylinder, broad pressure 
T Torus, peaked pressure  

stable 

C-B 

C-P 

T 

30 

Similar results for peaked pressure profiles and for a torus 



q0=1.05 q0=1.01 

First row is Poincare plots.  Second row is non-axisymmetric part of    1e eT T     V V 31 

Closeup shows mechanism for sawtooth crash 
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Crash is caused by modes with m=n > 1 



What happens if we increase the pressure further? 

• The (1,1) velocity field tends to reduce the central pressure through 
convection:  Vp 
 

• However, if you apply sufficient central heating, the pressure in the 
center will rise 
 

• This will cause an even stronger central dynamo voltage, causing q0 to 
rise…which will tend to reduce the dynamo voltage, causing q0 to fall. 
 

• q0 will find it’s new equilibrium value with q0 > 1, but increasing the 
pressure will cause higher-n modes with n=m to abruptly become 
unstable 
 

• These localized high (m,n) modes in a region of very low shear cause the 
central region to become stochastic, causing the central temperature to 
rapidly drop, but having very little effect on the q-profile. 

33 
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R 

• M3D-C1 uses high-order curved 
triangular prism elements 
 

• Within each triangular prism, there 
is a polynomial in (R,,Z) with 72 
coefficients 
 

• The solution and 1st derivatives are 
constrained to be continuous from 
one element to the next. 
 

• Thus, there is much more resolution 
than for the same number of linear 
elements 
 

• Error ~ h5 

M3D-C1 uses unique 3D high-order finite elements 

h 

Z 

Also, implicit time-
stepping allows for very 
long time simulations 



NSTX   
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Low- Kadomtsev Reconnection 
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Repeating Sawtooth Cycle 

60 

63 62 66 65 64 

• q0 drops below 1 ~  
 

• Resistive kink becomes 
unstable with growth 
rate 1/3 
 

• Mode takes a few         
e-folding times to grow 
and reconnect 
 

• Typically  0.95 < q0 < 1.0 
for S ~ 105-106, low- 

36 



0 p/B2 =2% behavior much different from low  

• At low-, plasma kinetic energy (and Te0 and 
q0) undergo periodic oscillations where 
current peaks, reconnection occurs and 
process repeats (sawteeth) 
 

• At 2% , plasma goes into a stationary state 
with large helical flow patterns and ultra-
low magnetic shear with q=1 in center 

Large region in center 
with q = 1  

#  of toroidal transits

#  of poloidal transits
q 

37 



Plotted on top is poloidal velocity stream function U where 
 
On bottom are vectors of poloidal velocity V1,1   

 = 0 
  = 0 +

 900  = 0  +
 1800  = 0 +

 2700 

2

1,1 R U   V

Stationary helical flow pattern persists driven 
by unstable interchange mode 

 R 

Z 

q =1.01 
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Next, start with the same cylindrical equilibrium 
but now add sources and evolve the equilibrium 

In axisymmetric equilibrium:   0eT S   

410

30S

 

 



510

3.0S

 

 



610

0.3S

 

 



Runs 11,12,13:   p0=.02, q0=1.02 

In all 3 cases, configuration evolves into a near axisymmetric equilibrium with 
pressure flattened in center:    q  1 but no sawtoothing behavior 

A B C 
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In all 3 cases, q-profile evolves to a stationary state with 
q0=1 and very low shear in center.  No sawtoothing 
 
Also shown are 3 2D (axisymmetric) cases with the same 
transport and sources as the 3D cases 

Next, start with the same cylindrical equilibrium but 
now add sources and evolve the equilibrium (2) 
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Next, start with the same cylindrical equilibrium but 
now add sources and evolve the equilibrium (3) 

410

30S

 

 



510

3.0S

 

 



610

0.3S

 

 


A B C 

For all 3 cases, turbulence inside q=1 region for all harmonics 
calculated.         No sign of sawtooth activity 
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Next, start with the same cylindrical equilibrium but 
now add sources and evolve the equilibrium (4) 

The magnitude of the n=1 velocity and magnetic perturbations 
adjusts itself to keep q0=1 via the dynamo mechanism.   Larger 
values are needed for the case with the largest sources. 
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Next, start with the same cylindrical equilibrium but 
now add sources and evolve the equilibrium (5) 

Trajectory in (q0, P1) space is to a nearly stationary point at q0=1 and 
very low P1 limited by stability to the higher-n modes.  No sawtoothing 
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