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* PPPL Strategic Initiative
— W7X and LHD collaborations
— Theory 5-year Plan: advances in stellarator modeling
— LDRD activities on experiment design

* Simons Foundation: Hidden Symmetries and Fusion Energy” study

* DPP/Community Planning Initiative
— Aim for the minimum cost, steady-state fusion pilot plant (NAS
recommendation)
— As recommended by the recent NAS report
— Strategy: Simplify

* Proposal for new experiment: SAS



Why Stellarators?

Stellarators simplify fusion systems:

» Steady, low risk operation: Intrinsically avoid disruptions, runaways
EM loads.

e Efficient, Compact Facility: No need for current drive (v.low
recirculating power, smaller unit size)

* MHD Stability at high 3: higher power density without complexity of
v. high field

* Reduced risk: Fields are from coils, not self-organization

e Easier first wall: Stellarators have longer connection length
divertors, higher plasma density (lower heat loads)



2010 Pilot Plant Studies Identify Opportunities

— 1000
* Eliminate CD need & systems 5 Stellarator AT Pilot | ST Pilot|CS Pilot
i 800
— Increase energy efficiency I Tokamalk A=R,a | 40 | 17 | 45
~ Reduce required nTr for fixed P-electric & *° Ry [m] a0 | 22 | 475
— Retire n risk, disruption risks g 0o B M N
. .nCD . P o ﬂ @ I [MA] 7.7 20 2.1
— Simplify and increase TBR w200 ~
E’% 0 / Qs 3.8 7.3 1.5
brod q ’ ;uo::gn Powerzl::v?,] 3000 fesoriota | 069 | 090 | 023
[ ]
roduce net power at moderate [H. Zohm et al., 2017] T - o -
scale and plasma power flux. Aim for HuorHese | 122 | 1.35 | 175
_ ~50 _ 100 MWe Br [%] 4.3 39 6.9
B 3.7 6.1 -
- 30-100 MW plasma heating, JET/W7X scale e | e7a | 1016 | 520
- low tritium inventory PaucMW] | 79 | 50 | 12
Qpr 8.5 20.3 44
Qung 1.0 1.0 25
* Need compatible high-p, high confinement & PFC solution e | o | o | o]
ﬂ <

[J.E. Menard et al., NF 2011)]



What has changed? Understanding

W7-X has Rapidly Exceeded Expectations: (Klinger et al, NF 59 (2019) 112004)
- T,(0) ~ 10 keV; T up to ~0.24 sec e U8 S
— Initial validation of neoclassical optimization %

— Turbulence dominated confinement
— No impurity accumulation ‘
— Well functioning 3D divertor, controlled detachment

Building on results from HSX and LHD

Conclusion: Stellarator optimization works! \/

Theory and modeling-based understanding improved:
- How to design for fast ion orbit confinement (2 methods)
- Unifying tokamak and stellarator understanding and codes (esp. turbulence)

Tokamak exploration of PFC materials (high Z; low Z; liquids) 5



What has changed? Coil Simplification

Highest priority need in previous assessments
— Crucial for maintenance and availability
— Construction costs

Three approaches, likely used in combination

— Permanent magnets for 3-D shaping

— Bulk superconductors, for simple 3D shaping at high B
— Improved coil-design codes, enabling coil shape simplificanon

Permanent magnets: simplify engineering & design

— Equivalent to saddle coils (early design for NCSX)

— Primarily on inside, outer thickness ~zero

— Planar coils for TF (simplest possible)

— At highest B, may only be usable on outer half of torus
Guarantee straight coil outer legs for maintenance access

Need to get experience with these methods, mature engineering approaches 6



Outstanding Needs for Pilot Plant

* What 3-value to design for? 51
— B =5.4% (LHD), B=3.4% (W7-AS) sustained; 4t
soft-maximum; limit? g 3 y
— Much higher than predicted by linear MHD A 2
— Can high-p with high-H be extrapolated? Voot |
* Integration with metal PFCs (pref. low-Z, lig.) 0 . lHD:
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Integrated simplified designs
— Engineering
— Stellarator plasma physics design & boundary approach (metal PFCs)
— Rest of fusion energy system

Integration validation (TRL advance)



SAS: Advance Stellarator Innovation, 3 ideas

Overall goal: Develop basis toward reduced-cost practical fusion energy stellarator
(e.g. NAS study)

* Leverage stellarator advances
- Improved understanding from recent stellarator (W7X,...) and tokamak experiments
— Synergy with Simons “Hidden symmetries and fusion energy” study results: focus on QS

* Extreme simplification of 3-D Stellarator coils using permanent magnets
— Resolve primary engineering risk and barrier for stellarators
— Disruptive technology to simplify construction, reduce costs, greatly reduce maintenance
complexity
- Made possible by modern, neodymium/RE magnets

* Liquid-metal first wall, building on LTX-p3 and other initiatives
- Increase confinement
— Path to robust handling of power exhaust
— Use increased confinement to explore 3 limit and physics 8



Proposal Opportunities & Timeline

* Simons Foundation has expressed interest in providing partial funding
— In partnership with Hidden Symmetries project
— At modest finding scale
— In partnership with DOE and other funders
— “SAS”: Simons Advanced Stellarator

* ARPA-E will solicit new proposals for next round of fusion proposals
— Fusion energy development and technology focused
— Solicitation expected Sept. 2019. Proposals probably Oct. 2019. Funding ~ 1/1/2020 ?
— Requires co-funding, effectively requires private participation




SAS Approach

e Establish initial progress at minimum cost,
— World’s first simple optimized stellarator!
— Improved confinement, through optimized QS and Lithium-boundary
— Target key topics

* Re-use components, when possible
— Some parts from NCSX (TF coils, vacuum vessel), but room-temperature
— Li-approach, NB (1.5MW, 20kV) and some diagnostics from LTX-f3
— Make improved equilibrium - beyond NCSX. Most likely QA.

* Make re-configurable (via re-arranging magnets)
— Vehicle for testing Hidden Symmetries results
— For research flexibility
— Increase capabilities (incl. B) over time 10



Permanent Magnets Dramatically Simplify Engineering & Design

e Shell of magnets around plasma

— “Current potential” (NESCOIL, REGCOIL) calculations
give simple indication of needed surface-magnetization

* Advanced magnet technology approach

Halbach array (1980): for higher magnet efficiency.

Uses tangential magnetization to reduce magnetic
reluctance, increase field strength at plasma

Used in high efficiency motors, generators

Open NMR magnet systems

Solutions by C.Zhu & M.Landreman for finite
thickness calculations.
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“Rare Earth” magnets are almost ideal

Typical curves

T
16 FCRB2_cRrs3_1 BHS0 R

* u. =1.01-1.05. Highly anisotropic.
 Remnant magnetic field and coercivity
depend on detailed recipe and processing
* Both increase as temperature drops
* Nd-Fe-B has a phase change at 100-150K 1 ] 1
Arnold: NdFeB at 293K with Br=1.49T /\ |

* Pr-Fe-B goes to higher performance < 100K ' ' ' ' '

N50

t

VAC764
1.4 CH49

Remanent magnetisation M, (T)

100 150 200 250 300
. . . . Temperature (K)
 Commercially available in Ig. quantity B ' ' * .
o | e .
* Fe-N may (someday) offer B, > 2.5T
s T i
:’a 5 L _
Material Temp Br(T) | Hee (kA/m) | He(Oe) | Hgy(kA/m) | Hg (Oe) 2 A
PrfeB NMX-68CU | 77K 1.67 1240 15582 6200 77911 5 CH1
@]
3 _
PrFeB NMX-68CU | 295K | 1.40 1010 12692 1680 21112
NdFeB NMX-S45SH | 150K | 1.50 1137 14288 4000 50265 2 .
NdFeB NMX-S455H | 293K | 1.30 970 12200 1671 21000  |C.Benabderrahmane et al . T

100 150 200 250 300
E.Moog et aI, ANL Temperature (K)



Initial Finite-Thickness Solution

Perpendicular only (C.Zhu)

Volume: 2.96 m3 (~24 tons
~ $1.2M)

Bn residual error:
3.76E-4 (clipped)
2.70E-4(whole)

Max thickness ~20cm
With non-perp. elements,

Landreman has max-
thickness ~13cm

6/‘ 06/19/2019 C. Zhu / Stellarator designs with permanent magnets 13



Viewing from the outboard.

1.1e+04

— 10500

— 10000
9500
9000
8500
8000
7500
7000

= 6500

— 6000
— 5.5e+03

6/‘ 06/19/2019 C. Zhu / Stellarator designs with permanent magnets 14



Free-boundary VMEC shows good approximation.
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Opportunities for Configuration Improvement

Improve fast particle confinement (ala Nemov or Henneberg)
Reduce turbulent transport

Maximize f3

Divertor design

Optimize for PM approach (different than coils!)
— Reduce needed on plasma
— Reduce elongation(?)

Incorporate guidance from Pilot Plant studies
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We welcome suggestions and contributions, on all aspects

Lots of work to come:
Overall Mission and Expected Impact

* Research goals, plan, and basis
— Design, heating, confinement, diagnostics
— Phased research goals/plan and milestones

* Engineering goals, plan, basis
— Enough design to be confident in approach and risk control

 Cost estimate
By Sept./Oct. 2019
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Initiate a Path to a Pilot Plant

1. Near term experiment(s)
e Test & develop engineering of simpler coils
* Test confinement & 3 with low-Z metal PFCs
 Test ability to design for reduced turbulence
QOurplan is to start this with the
permanent magnet stellarator
*  Rapid deployment of design improvements

2. Integration validation experiment (TRL advance)
— Integrated Engineering
— Plasma physics (i.e. coils) & boundary (plumbing & cooling)
— Mainly DD, perhaps trace T to validate reactivity?

3. Pilot Plant, demonstration "



