

Stellarator Initiative and New Approaches

M.C. Zarnstorff, C. Zhu, D. A. Gates, S. Cowley (PPPL) M. Landreman (Maryland), P. Helander (IPP-Greifswald)

> PPPL June 24, 2019

Initiatives on Stellarators for Fusion

- PPPL Strategic Initiative
 - W7X and LHD collaborations
 - Theory 5-year Plan: advances in stellarator modeling
 - LDRD activities on experiment design
- Simons Foundation: Hidden Symmetries and Fusion Energy" study
- DPP/Community Planning Initiative
 - Aim for the minimum cost, steady-state fusion pilot plant (NAS recommendation)
 - As recommended by the recent NAS report
 - Strategy: Simplify
- Proposal for new experiment: SAS

Why Stellarators?

Stellarators simplify fusion systems:

- Steady, low risk operation: Intrinsically avoid disruptions, runaways EM loads.
- Efficient, Compact Facility: No need for current drive (v.low recirculating power, smaller unit size)
- MHD Stability at high β : higher power density without complexity of v. high field
- Reduced risk: Fields are from coils, not self-organization
- Easier first wall: Stellarators have longer connection length divertors, higher plasma density (lower heat loads)

2010 Pilot Plant Studies Identify Opportunities

- Eliminate CD need & systems
 - Increase energy efficiency
 - Reduce required nTt for fixed P-electric
 - Retire η_{CD} risk, disruption risks
 - Simplify and increase TBR
- Produce net power at moderate scale and plasma power flux. Aim for
 - ~50 100 MWe
 - 30-100 MW plasma heating, JET/W7X scale
 - low tritium inventory
- Need compatible high- β , high confinement & PFC solution

[H. Zohm et al., 2017]

	AT Pilot	ST Pilot	CS Pilot				
$A = R_0 / a$	4.0	1.7	4.5				
R₀ [m]	4.0	2.2	4.75				
Β _τ [T]	6.0	2.4	5.6				
I _Р [МА]	7.7	20	2.1				
q ₉₅	3.8	7.3	1.5				
f _{BS} or iota from BS	0.69	0.90	0.23				
n _e / n _{Greenwald}	1	0.7	-				
H_{98} or H_{1SS04}	1.22	1.35	1.75				
β _τ [%]	4.8	39	6.9				
β _N	3.7	6.1	-				
P _{fus} [MW]	674	1016	529				
P _{aux} [MW]	79	50	12				
Q _{DT}	8.5	20.3	44				
\mathbf{Q}_{eng}	1.0	1.0	2.5				
Net Electric [MW]	0	0	110				
[LE Menard et al. NE 2011)]							

What has changed? Understanding

W7-X has Rapidly Exceeded Expectations: (Klinger et al, NF 59 (2019) 112004)

- $T_e(0) \approx 10$ keV; τ_E up to ~0.24 sec
- Initial validation of neoclassical optimization
- Turbulence dominated confinement
- No impurity accumulation
- Well functioning 3D divertor, controlled detachment
 Building on results from HSX and LHD

Conclusion: Stellarator optimization works!

Theory and modeling-based understanding improved:

- How to design for fast ion orbit confinement (2 methods)
- Unifying tokamak and stellarator understanding and codes (esp. turbulence)

Tokamak exploration of PFC materials (high Z; low Z; liquids)

What has changed? Coil Simplification

- Highest priority need in previous assessments
 - Crucial for maintenance and availability
 - Construction costs
- <u>Three approaches</u>, likely used in combination
 - Permanent magnets for 3-D shaping
 - Bulk superconductors, for simple 3D shaping at high B
 - Improved coil-design codes, enabling coil shape simplification
- Permanent magnets: simplify engineering & design
 - Equivalent to saddle coils (early design for NCSX)
 - Primarily on inside, outer thickness ~zero
 - Planar coils for TF (simplest possible)
 - At highest B, may only be usable on outer half of torus
 Guarantee straight coil outer legs for maintenance access

Need to get experience with these methods, mature engineering approaches

Outstanding Needs for Pilot Plant

- What β -value to design for?
 - β =5.4% (LHD), β =3.4% (W7-AS) sustained; soft-maximum; *limit*?
 - Much higher than predicted by linear MHD
 - Can high- β with high-H be extrapolated?
- Integration with metal PFCs (pref. low-Z, liq.)
- Integrated *simplified* designs
 - Engineering
 - Stellarator plasma physics design & boundary approach (metal PFCs)
 - Rest of fusion energy system
- Integration validation (TRL advance)

SAS: Advance Stellarator Innovation, 3 ideas

Overall goal: Develop basis toward reduced-cost practical fusion energy stellarator (e.g. NAS study)

- Leverage stellarator advances
 - Improved understanding from recent stellarator (W7X,...) and tokamak experiments
 - Synergy with Simons "Hidden symmetries and fusion energy" study results: focus on QS
- Extreme simplification of 3-D Stellarator coils using permanent magnets
 - Resolve primary engineering risk and barrier for stellarators
 - Disruptive technology to simplify construction, reduce costs, greatly reduce maintenance complexity
 - Made possible by modern, neodymium/RE magnets
- Liquid-metal first wall, building on LTX- β and other initiatives
 - Increase confinement
 - Path to robust handling of power exhaust
 - Use increased confinement to explore β limit and physics

Proposal Opportunities & Timeline

- Simons Foundation has expressed interest in providing partial funding
 - In partnership with Hidden Symmetries project
 - At modest finding scale
 - In partnership with DOE and other funders
 - "SAS": Simons Advanced Stellarator
- ARPA-E will solicit new proposals for next round of fusion proposals
 - Fusion energy development and technology focused
 - Solicitation expected Sept. 2019. <u>Proposals probably Oct. 2019</u>. Funding ~ 1/1/2020?
 - Requires co-funding, effectively requires private participation

SAS Approach

- Establish initial progress at minimum cost,
 - World's first <u>simple</u> optimized stellarator!
 - Improved confinement, through optimized QS and Lithium-boundary
 - Target key topics
- Re-use components, when possible
 - Some parts from NCSX (TF coils, vacuum vessel), but room-temperature
 - Li-approach, NB (1.5MW, 20kV) and some diagnostics from LTX- β
 - Make improved equilibrium beyond NCSX. Most likely QA.
- Make re-configurable (via re-arranging magnets)
 - Vehicle for testing Hidden Symmetries results
 - For research flexibility
 - Increase capabilities (incl. B) over time

Permanent Magnets Dramatically Simplify Engineering & Design

- Shell of magnets around plasma
 - "Current potential" (NESCOIL, REGCOIL) calculations give simple indication of needed surface-magnetization
- Advanced magnet technology approach
 - Halbach array (1980): for higher magnet efficiency.
 - Uses tangential magnetization to reduce magnetic reluctance, increase field strength at plasma
 - Used in high efficiency motors, generators
 - Open NMR magnet systems

Solutions by C.Zhu & M.Landreman for finite thickness calculations.

"Rare Earth" magnets are almost ideal

- $\mu_r = 1.01 1.05$. Highly anisotropic.
- Remnant magnetic field and coercivity depend on detailed recipe and processing
- Both increase as temperature drops
- Nd-Fe-B has a phase change at 100-150K Arnold: NdFeB at 293K with Br=1.49T
- Pr-Fe-B goes to higher performance < 100K
- Commercially available in lg. quantity
- Fe-N may (someday) offer $B_r > 2.5T$

Material	Temp	B _r (T)	H _{cB} (kA/m)	H _{cB} (Oe)	H _{cJ} (kA/m)	H _c (Oe)
PrFeB NMX-68CU	77 K	1.67	1240	15582	6200	77911
PrFeB NMX-68CU	295 K	1.40	1010	12692	1680	21112
NdFeB NMX-S45SH	150 K	1.50	1137	14288	4000	50265
NdFeB NMX-S45SH	293 K	1.30	970	12200	1671	21000

E.Moog et al, ANL

Initial Finite-Thickness Solution Perpendicular only (C.Zhu)

Volume: 2.96 m³ (~24 tons ~ \$1.2M)

Bn residual error: 3.76E-4 (clipped) 2.70E-4(whole)

Max thickness ~20cm

With non-perp. elements, Landreman has maxthickness ~13cm

)) 06/19/2019

C. Zhu / Stellarator designs with permanent magnets

Viewing from the outboard.

C. Zhu / Stellarator designs with permanent magnets

Free-boundary VMEC shows good approximation.

C. Zhu / Stellarator designs with permanent magnets

Opportunities for Configuration Improvement

- Improve fast particle confinement (ala Nemov or Henneberg)
- Reduce turbulent transport
- Maximize β
- Divertor design
- Optimize for PM approach (different than coils!)
 - Reduce needed on plasma
 - Reduce elongation(?)
- Incorporate guidance from Pilot Plant studies

We welcome suggestions and contributions, on all aspects

Lots of work to come: Overall Mission and Expected Impact

- Research goals, plan, and basis
 - Design, heating, confinement, diagnostics
 - Phased research goals/plan and milestones
- Engineering goals, plan, basis
 - Enough design to be confident in approach and risk control
- Cost estimate

Initiate a Path to a Pilot Plant

- 1. Near term experiment(s)
 - Test & develop engineering of simpler coils
 - Test confinement & β with low-Z metal PFCs
 - Test ability to design for reduced turbulence
 - Our plan is to start this with the permanent magnet stellarator
 - Rapid deployment of design improvements
- 2. Integration validation experiment (TRL advance)
 - Integrated Engineering
 - Plasma physics (i.e. coils) & boundary (plumbing & cooling)
 - Mainly DD, perhaps trace T to validate reactivity?
- 3. Pilot Plant, demonstration