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Electron confinement in a plasma-filled magnetic 
mirror with Fermi-Ulam-like B-field-parallel heating
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Fermi-Ulam Acceleration in a Magnetic Mirror

• Fermi-Ulam acceleration: to explain 
cosmic ray energy distribution, 
particle bounces between moving 
walls. 1-D process, 𝐸 or 𝑣||

• Novel model: particle also 
experiences non-adiabatic Δ𝜇 jumps 
at mirror midplane. 2-D process, (𝐸
and 𝜇) or (𝑣|| and 𝑣&)

2

'𝑉

Δ𝜇



Princeton
S Y S T E M S

FUSION

Photograph

3

88 cm length
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88 cm length

𝑇*++ = 2.5 keV
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Apparatus
• Apparatus

• Small (1m) central mirror cell
• B456 ≈ 200 G
• 𝑅 ≈ 10 − 40
• 3 cells, all critical
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• 25 - 500 W at 14 - 27 MHz
• Bulk plasma at 𝑇* ≈ 5 eV, 𝑛* ≈
10?@A??/cmE

• Probes for 0 – 50 eV
• X-ray for 200 eV – 30 keV
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• 25 - 500 W at 14 - 27 MHz
• Bulk plasma at 𝑇* ≈ 5 eV, 𝑛* ≈
10?@A??/cmE

• Probes for 0 – 50 eV
• X-ray for 200 eV – 30 keV

• Plasma was expected to be “cold,” 5 eV, 
lightbulb-like

• X-ray detectors added to study a different
plasma, fortuitously discovered this 
population alongside the cold population
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Apparatus
• Apparatus

• Small (1m) central mirror cell
• B456 ≈ 200 G
• 𝑅 ≈ 10 − 40
• 3 cells, all critical

8

• 25 - 500 W at 14 - 27 MHz
• Bulk plasma at 𝑇* ≈ 5 eV, 𝑛* ≈
10?@A??/cmE

• Probes for 0 – 50 eV
• X-ray for 200 eV – 30 keV

• SEC: Source End Cell
• Plasma and warm electrons created

• CC: Center Cell
• Warm electrons trapped
• Warm electrons accelerated into hot 

electrons
• FEC: Far End Cell

• Plasma terminates
• Beam produced
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Fermi-Ulam Map

• Fermi-Ulam Map: Ulam (1961)
• Particle bounces between fixed and oscillating 

wall. 1-D dynamics!
• Many variations: Sawtooth wall motion, both 

walls move, particle returns under gravity, etc.

• 𝑢GH? = 𝑢G + sinΨG
• ΨGH? = ΨG + 2𝜋𝑀/𝑢GH?
• 𝑢 is normalized particle velocity, 𝑀/𝑢 is 

normalized transit time, Ψ is phase of 
oscillating wall

• Below some critical velocity: particle is free to 
diffuse through (𝑢,Ψ) space, excepting small 
islands

• Above some critical velocity: particle is trapped 
in quasi-periodic orbits in (𝑢,Ψ) (islands)

9

Lieberman (1972)
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Electrostatic fluctuation in a magnetic mirror
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Mirror with localized potential fluctuation

A changing potential acts like 
a moving wall, reflects particles

'𝑉• Localized voltage fluctuation
• Electrons passing close to the nozzle get 

increments to �⃗�|| component of velocity, 
as though bouncing from a moving wall

• �⃗�& is unchanged

• Particles either de-trapped or 
prevented from heating
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Non-adiabaticity of magnetic moment in magnetic mirror

• Single-transit change in 𝜇:
• Boris algorithm: Numerical integration
• Hastie, Taylor, Hobbes (1969): 

Asymptotics
• Speiser (1970) collisions
• Novel analysis produces equation: 

Δ𝜇 = TUVU∥XY Z
[Y\Y

𝑒
^_Y
`a`

b c∥
` sin𝜙@

• Not produced from asymptotic series; 
elementary approximations 
considered.

• 𝜇 conserved around a wire
• 𝑧@Af = 𝑧\Af + 𝑧[Af, change in curvature

• 𝑧gf =
h_,_` g
fgY
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Eqn. at left

Eqn. at left

1.5 keV electron (top) and 15 keV
electron (bottom) in PFRC-II

5.4 keV electron in PFRC-II
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Non-adiabaticity of magnetic moment in magnetic mirror

• Long-time behavior: Chirikov (1978)
• Equations for 𝜇, 𝜓 reduce to standard map:

• 𝑝GH? = 𝑝G + 𝐾sin𝑞G; 𝑞GH? = 𝑞G + 𝑝GH?
• 𝐾 ≡ −𝜕oΔ𝜓×𝛿𝜇
• 𝑝 = 𝜕oΔ𝜓×𝜇; 𝑞 = 𝜓 + 𝜋
• 𝜓 the gyrophase at the midplane
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𝐾 = 0.9 𝐾 = 1.1 𝐾 = 1.3
The map at left exhibits a separatrix until 𝐾 = 1

(𝜇t, 𝐸) for 𝐾 = 1 in PFRC. 𝜇t is separatrix between 
diffusive and quasiperiodic. Boris algorithm confirmation
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Non-adiabaticity provides trapping mechanism

13

0 1 2 3 4 5
v||

0

1

2

3

4

5

v Δ𝜇

Δ𝐸

• Trapping by Δ𝜇:
• Fermi acceleration causes Δ𝐸

purely in the �⃗�|| direction, 
toward de-trapping

• Non-conservation of 𝜇 causes 
diffusion in both directions 
(mostly �⃗�&) 

• Joined diffusion allows 
arbitrarily large 𝐸 while 
remaining trapped

Having diffusion in 𝜇 allows Fermi acceleration not to de-
trap particles
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Non-adiabaticity provides adequate decorrelation
• Decorrelation by Δ𝜇:

• 𝜇, magnetic moment, is not
conserved for 1+ keV electrons 
in the PFRC-II.

• Sign of Δ𝜇 determined by 
gyrophase, entirely 
decorrelated from RF and 
bounce phase. Essentially 
random.
• 𝑝GH? = 𝑝G + 𝐾sin𝛼G
• 𝛼GH? = 𝛼G + 𝑝GH? + 𝑅𝑟GH?

• 𝑝G = 𝐾𝐸G/Δ𝐸, 𝛼G is the 
oscillation phase upon 
particle incidence. 𝑟G =
Δ𝜇G/𝛿𝜇 is random from -1 to 
1. 

• 𝐾 ≡ 𝜕w Δ𝛼 ×Δ𝐸 < 0.1
• 𝑅 ≡ 𝜕o Δ𝛼 ×𝛿𝜇 ≈ 0.1

• Certainly a sufficient condition 
for decorrelation
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Having 𝑅 ∼ 𝐾 is a sufficient criterion to allow diffusion.
That is, having the change in RF phase due 

to 𝝁 jumps similar to the change in RF 
phase due to 𝑬 jumps.

𝛼 𝛼 𝛼

𝐾 = 0.1, 𝑅 = 0 𝐾 = 0.1, 𝑅 = 0.1 𝐾 = 0.1, 𝑅 = 0.2
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Typical Properties of the Hot Electrons
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X-ray measurements reveal that: alongside the warm population is a tenuous hot population
This spectrum fits a Maxwellian distribution with 𝑛* = 5×10|/cmE, 𝑇*++ = 2.5 keV

This spectrum extends measurably beyond 30 keV

C
N

Ar

FeCr

Warm 
population

Hot 
population

30+ keV
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Background on particle heating via electrostatic waves

• Decorrelation allows diffusion in EEDF
• 𝜕}𝑓 = 𝜕w𝐷w𝜕w𝑓 − 𝑓/𝜏

• Green’s function for solution: 𝑓 ∝ 𝑒±w/����, 𝑇*++ = Δ𝐸 �
}�

• 𝑓 EEDF
• 𝐷w energy diffusivity
• 𝜏 loss time
• 𝑡} transit time
• Δ𝐸 energy increment

16

Particles injected at 𝐸� are shaped into an exponential function 
of energy by the action of energy diffusion and loss
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Particles injected at 𝐸� are shaped into an exponential function 
of energy by the action of energy diffusion and loss

Hot electrons

Warm electrons

Electrostatic
Fluctuation

Phase Decorrelation

Confinement

~ 30 W

~ 3 W
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Detector Calibration Via Gas-target Bremsstrahlung

• Aside: x-ray measurement 
(Swanson, 2018)
• Slope: line-averaged 

temperature
• Intensity:  line-averaged density
• 4 detector mounts on PFRC
• Calibration, Poisson-regularized 

inversion
• EEDF features from 600 eV to 

100 keV
• Bayesian. Self-consistently 

includes effects of
• Window transmission
• Detector resolution
• Counting statistics

18

Ar
Al

NeC
N
O Energy 

calibrated
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Ar
Al
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N
O Energy 

calibrated

Window 
transmission 

calibrated
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Typical Properties of the Hot Electrons

• Measurement of 
EEDF allows:
• Non-Maxwellian 

features to be 
discovered

• Energy-dependent 
quantities (risetime, 
decay time) to be 
measured

• Radial profiles to be 
measured (Abel 
transform requires 
linear quantity)

20

𝑇* = 2.5 keV

𝑛* = 3×10|/cmE

The full EEDF is available for each run condition.
The full EEDF fits a Maxwellian best, and a power law 

less well. 𝑝 = −2.2
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Stronger fluctuation -> Hotter electrons
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Expected saturation is ∼ 50 V

Probe

Beam

• Spontaneous potential fluctuation measured via probe
• Measurements are consistent with two-stream instability

• Recall 𝑇*++ = 𝜟𝑬 �
}�

Beam comes from ionization downstream of a potential drop

Beam
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Stronger fluctuation -> Hotter electrons

• FEC pressure increases 
both electrostatic 
oscillation and x-ray 
temperature

• 𝑇*++ = 𝜟𝑬 �
}�

22

Temperature and fluctuation amplitude vary in the 
way predicted by the diffusion-loss model
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• Autocorrelation signal
• Quantity plotted is ∫ 𝑑𝑡 [𝑉 𝑡 ×𝑉 𝑡 + 𝑡� ], autocorrelation at some time delay
• White horizontal bands indicate a signal with period 𝑡�
• Alexeff (1968) measured periodicity changing timescale of 2 – 3 RF cycles, inferred 

turbulence.

23

Strong signal near 200 MHz. Changes frequency on a 
timescale of dozens of 𝜇s. Not turbulent.

Stronger fluctuation -> Hotter electrons

Frequencies:
Bulk 𝑓�* ∼1 – 3 GHz
Warm 𝑓�* ∼ 200 MHz
𝑓t* ∼ 200 MHz

This 200 MHz signal is 
what increases with 
increasing FEC pressure 
(beam current)

200 MHz

19 MHz RF
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• Quantity plotted is ∫ 𝑑𝑡 [𝑉 𝑡 ×𝑉 𝑡 + 𝑡� ], autocorrelation at some time delay
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Fourier transform, 200 MHz per division. Strong signal near 
200 MHz. Changes frequency on a timescale of dozens of 

𝜇s. Not turbulent.

Stronger fluctuation -> Hotter electrons

Frequencies:
Bulk 𝑓�* ∼1 – 3 GHz
Warm 𝑓�* ∼ 200 MHz
𝑓t* ∼ 200 MHz

This 200 MHz signal is 
what increases with 
increasing FEC pressure 
(beam current)

200 MHz

19 MHz RF
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200 MHz

19 MHz RF

Strong signal near 200 MHz. Changes frequency on a 
timescale of dozens of 𝜇s. Not turbulent.

Stronger fluctuation -> Hotter electrons

Frequencies:
Bulk 𝑓�* ∼1 – 3 GHz
Warm 𝑓�* ∼ 200 MHz
𝑓t* ∼ 200 MHz

This 200 MHz signal is 
what increases with 
increasing FEC pressure 
(beam current)
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Confinement increases with energy
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X-ray detector set to trigger on x-rays of an energy range. Raw 
oscillographs show that confinement time is larger for higher 

energy electrons.

• Olive: RF on/off
• Blue: RF pickup
• Green: X-ray count 

histogram
• Takes 100s of 𝜇s to 

heat up to high energy 
also
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Confinement increases with energy
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With the help of spectral inversion, we may quantify 
the e-folding time for each energy. Linear and sub-

linear dependences are consistent with data.

Uncertainty 
is large

Hundreds 
of 𝜇s is 
typical
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Confinement increases with energy

• Increased gas pressure
• Confinement time 

measured to decrease
• Temperature of the hot 

population measured 
to decrease in 
accordance with 

𝑇*++ = Δ𝐸 𝝉
}�

28

Changing confinement time by changing 
the gas pressure has the effect predicted 

by the diffusion model.
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Conclusions

• One can produce keV electrons in a small, low-power apparatus
• Fermi-Ulam acceleration can create high energy electrons in 

quasiadiabatic conditions
• 𝝁 is mobile
• Relevance to extant mirror experiments (~10)

• GOL-3-like multimirrors may be operated in non-turbulent modes (at lower 
pressure), and effective collisionality can be enhanced by shaping coils to 
produce Δ𝜇

• Relevance to the PFRC-II as an FRC experiment
• The PFRC-II is designed to study FRCs formed by RMF. We may probe FRC 

formation in the presence of fast electrons
• The SOL of the FRC is mirror-like, with high-curvature regions. Δ𝜇 will greatly 

affect SOL pressure by trapping and de-trapping passing electrons.
• The core of the FRC is also mirror-like, with low-field, high-curvature shell
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Non-adiabaticity of magnetic moment in magnetic mirror

• Background:
• 𝜇 assumed conserved or nearly so: Alfven (1950), Post (1958), many contemporary 

and modern reviews [Herskowitz (1990), Post (1987), Sheffield (1994), Simonen 
(2010)]
• Popular models can assume constant 𝜇, such as MHD with anisotropic pressure and 

gyrokinetics.
• A common “adiabatic parameter” which is assumed to control constancy of 𝜇 is 𝜖 =
𝜌𝛻𝐵/𝐵

• Δ𝜇 accurately measured or computed: Henrich (1956), Garren (1958), Gibson 
(1963), Hastie (1969), Birmingham (1984), Dykhne (1960), Cohen (1978), Chirikov 
(1979)
• Δ𝜇 actually seen to change significantly in regions where 𝜖 = 𝜌𝛻𝐵/𝐵 is very small.
• Actual adiabatic dependence includes 𝑣∥,𝑅t , 𝑅t�� the radius of curvature and its 

derivative.
• Intuitive picture from Delcourt (1994): centrifugal impulse.

• Long-term behavior of many Δ𝜇 compounded over many mirror transits: Chirikov 
(1978), Tagare (1986), Nakashima (2002), Zelenyi (2013), Chen (1992)
• One parameter 𝐾 ≡ −𝜕o Δ𝜓 ×𝛿𝜇 controls whether 𝜇 is free to diffuse or is trapped in a 

small band.
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Non-adiabaticity of magnetic moment in magnetic mirror

35

Plot shows energy at which a particle’s 𝜇 may change by 1%×𝑣∥/𝑣&

Deuteron in Generic mirror
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Non-adiabaticity of magnetic moment in magnetic mirror
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Deuteron in large FRC

Plot shows energy at which a particle’s 𝜇 may change by 1%×𝑣∥/𝑣&
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Radial Profile

• Profiles as a function 
of main magnetic field
• “Threshold” energy is 

600 eV
• These are the only 

non-line-averaged 
densities in this FPOE

• 𝐵456 is 240 G and 100 
G, respectively
• Nozzle-bore-limiting 

field lines at 2.5 cm 
and 3.3 cm, 
respectively.

• 𝜌4�� are 3.1 mm and 
7.5 mm, respectively

37

Density is peaked on-axis or weakly off-axis. 
Lower-energy density falls sharply outward of limiting field-line, but 

higher-energy density does not. High-energy particles have mobile 𝝁.



Princeton
S Y S T E M S

FUSION

5. Confinement increases with energy

• Rise-time of signal upon 
application of RF power
• “Threshold” energy is 600 

eV
• X-rays are collected until a 

set time after the RF 
power is turned on

38

Density and temperature of hot population 
take hundreds of 𝝁s to rise. That’s thousands 

of mirror transits.
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Fermi acceleration in the PFRC-II creates 3+ keV e-

• Conditions in the FEC
• Negative space potential (-600 V) from SEC fast electrons
• Ionization in FEC causes 600 eV beam in CC
• Unstable EVDF (from inverse Landau damping limit and Nyquist theorem)
• Approx. saturation voltage known

39

Plots showing space potential and density in 
the FEC vs the gas pressure in the FEC
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Column incident on sapphire window

• Hollow profile exhibited
• Explicable via Δ𝜇

40

Angle 1: head-on Angle 2: nozzle visible
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SEs are created warm by self-bias and SEE 

• Self-bias
• Large electron mobility causes RF electrodes to float at negative potential 

(Godyak 1990)
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Acceleration process couples to extant warm electrons

• Warm electron steady state
• Warm electron average transits

42

X-ray measurements show 30% higher
density of fast electrons in the CC, 
despite what we’d expect from the 

weaker magnetic field 𝐵�� ≈ 𝐵�w�/3.5
Electron density in the CC is 

anomalously high by a factor of ~5
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Acceleration process couples to extant warm electrons

• Warm electron steady state
• Warm electron average transits

43

X-ray measurements show 30% higher
density of fast electrons in the CC, 
despite what we’d expect from the 

weaker magnetic field 𝐵�� ≈ 𝐵�w�/3.5
Electron density in the CC is 

anomalously high by a factor of ~5

X-ray measurements show that electrons
in the CC persist for 300 transits or more
after the cessation of RF power


