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Heat flux detachment and a low level of eroding particle fluxes need to be

combined with sufficient particle exhaust in a successful divertor concept

« What'’s a divertor supposed to do? Plasma core performance is

to be maximized

« Stable density control
* Low impurity influx (Z.¢)
* Helium exhaust (7, y.*/te)
Divertor plasma defines
plasma wall interface

« Heat and particle flux handling
within technical limits

« Power dissipation \
* Neutral compression

* Impurity retention

Pumping system: stable particle
exhaust needs sufficient p,,

Wendelstein
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Heat flux detachment and a low level of eroding particle fluxes need to be

combined with sufficient particle exhaust in a successful divertor concept

« What'’s a divertor supposed to do?

Plasma core performance is
to be maximized

« Stable density control
* Low impurity influx (Z.¢)
* Helium exhaust (7, y.*/te)
Divertor plasma defines
plasma wall interface
Upstream
where particle and heat flux
come from (separatrix region)

« Heat and particle flux handling
within technical limits

« Power dissipation \
* Neutral compression

* Impurity retention

Pumping system: stable particle
exhaust needs sufficient p,,
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Heat flux detachment and a low level of eroding particle fluxes need to be

combined with sufficient particle exhaust in a successful divertor concept

[Y. Feng et al., Contri. Plasma Phys. 54 (2014) 426-431]

Downstream

Neg 1019 m3

Upstream

Importance of high n.q == highI'y?
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Heat flux detachment and a low level of eroding particle fluxes need to be

combined with sufficient particle exhaust in a successful divertor concept

[Y. Feng et al., Contri. Plasma Phys. 54 (2014) 426-431]

Downstream

Neg 1019 m3

Upstream

Importance of high n.q == highI'y?

lonization energy loss

Energy loss by impurity radiation Rapid ionization
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The island divertor at Wendelstein 7-X is a promising

helical resonant divertor! concept for stellarators

« Alow order resonance placed in the plasma edge defines the divertor structure

/ Magnetic islands

Plasma core

\

[X. Bonin et al., Nuclear Fusion 45 (2005) 22-29] %(ndelstein

Plasma edge

3 1[F. Karger und K. Lackner, Phys. Lett. A, 66 (1977) 385 ], [R. Koenig et al., PPCF 44 (2002) 2365 ] / i




The island divertor at Wendelstein 7-X is a promising
helical resonant divertor' concept for stellarators

The Island Divertor is a modular divertor

Plasma core

/'

The divertor target plates
intersect the islands

\

[X. Bonin et al., Nuclear Fusion 45 (2005) 22-29]

Plasma edge

\

4 'IF-Karger und K. Lackner, Phys. Lett. A, 66 (1977) 385 ], [R. Koenig et al., PPCF 44 (2002) 2365 ] Plasma contour /| \
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The island divertor at Wendelstein 7-X is a promising

helical resonant divertor' concept for stellarators

« Alow order resonance placed in the plasma edge defines the divertor structure

Plasma core

\

[X. Bonin et al., Nuclear Fusion 45 (2005) 22-29]
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The island divertor at Wendelstein 7-X is a promising

helical resonant divertor' concept for stellarators

« Alow order resonance placed in the plasma edge defines the divertor structure

/ Magnetic islands

Plasma core

\

[X. Bonin et al., Nuclear Fusion 45 (2005) 22-29]
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The island divertor at Wendelstein 7-X is a promising

helical resonant divertor! concept for stellarators

« Alow order resonance placed in the plasma edge defines the divertor structure

L/ Magnetic islands

Plasma core

\

[X. Bonin et al., Nuclear Fusion 45 (2005) 22-29]

| ; ertical Tar. I
[Y. Gao et al., Nuclear Fusion (2019)] ——-..__. Herizontal Tar.

Plasma edge

Standard divertor configuration (SDC): pairs of modules 180
degree apart toroidally are connected by magnetic flux tubes

Wendelstein
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The island divertor at Wendelstein 7-X is a promising

helical resonant divertor! concept for stellarators

« Alow order resonance placed in the plasma edge defines the divertor structure

L/ Magnetic islands

Plasma core

\

[X. Bonin et al., Nuclear Fusion 45 (2005) 22-29]

| ; ertical Tar. I
[Y. Gao et al., Nuclear Fusion (2019)] ——-..__. Herizontal Tar.

Plasma edge

This divertor concept was tested at W7-AS and now needs to be qualified as a .
viable stellarator system component for steady state plasma operation. peaelstein
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Outline of this talk in form of an executive summary

A stable, thermally fully detached island divertor regime with small divertor particle
fluxes but still sufficient divertor neutral pressures was shown for the first time.

This detached island divertor regime is reached with minimal feedback control in a
reliable fashion and the divertor operational point is defined through sufficient
radiative losses at a given input power.

The geometry of the magnetic islands forming the divertor allow to fine tune the
divertor neutral distribution for maximized neutral pressure in the detached state.

This island divertor regime is compatible with steady state particle exhaust
for the upcoming high-performance campaign of W7-X.

Wendelstein




Outline of this talk in form of an executive summary

A stable, thermally fully detached island divertor regime with small divertor particle
fluxes but still sufficient divertor neutral pressures was shown for the first time.

This detached island divertor regime is reached with minimal feedback control in a
reliable fashion and the divertor operational point is defined through sufficient
radiative losses at a given input power.

The geometry of the magnetic islands forming the divertor allow to fine tune the
divertor neutral distribution for maximized neutral pressure in the detached state.

Wendelstein

7-X
8 I




Full and homogeneous thermal detachment was obtained during a gradual

density increase by just 20% - a reliable access scenario due to f.,4, dependence
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The homogeneous dissipation of the divertor power load during the

density increase is reproduced in EMC3-EIRENE modeling
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The heat flux reduction is driven by a density scaling of f,,4 and a complete

thermal detachment is combined with significant neutral pressures

Integral heat flux to targets
vanishes with increasing density
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The heat flux reduction is driven by a density scaling of f,,4 and a complete

thermal detachment is combined with significant neutral pressures

Integral heat flux to targets
vanishes with increasing density
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The heat flux reduction is driven by a density scaling of f,,4 and a complete

thermal detachment is combined with significant neutral pressures

Integral heat flux to targets Radiative fraction drives heat flux Small heat flux can be combined
vanishes with increasing density dissipation into detached regime with significant neutral pressures
5r
= »
2] 41 & ﬁ$
R
o |aFeas
= U g e
J37 “e’%%@
®
c
G2}
>
T
31
. 20180814.024 20180814.024 20180814.024
0 D . : . . . . . .
9.5 10 10.5 1 115 13 04 05 06 07 08 09 5 5.5 6 6.5 7
Line integrated density ne,; [10"® m?] Radiative Fraction Neutral gas pressure [10™ mbar]

A regime of small integral heat flux (<0.5MW) and small peak (<0.2 MW m-) has TSR
been accomplished at up to 0.05-0.1 Pa (10-3 mbar) neutral pressure levels %
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This stable detachment was obtained with high divertor neutral pressures for

up to 30s only limited by input energy limits in the uncooled divertor phase
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Outline of this talk in form of an executive summary

This detached island divertor regime is reached with minimal feedback control in a
reliable fashion and the divertor operational point is defined through sufficient
radiative losses at a given input power.

The geometry of the magnetic islands forming the divertor allow to fine tune the
divertor neutral distribution for maximized neutral pressure in the detached state.
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Moderate divertor neutral pressures within a quite limited density

range was seen at W7-X without a boronization

Averaged neutral particle pressure

at pumping gap Neutral particle compression in divertor
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Boronization of W7-X yielded build up of substantial divertor neutral

pressure at largely increased density limits

Averaged neutral particle pressure

. Neutral particle compression in divertor
at pumping gap
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This attractive scenario could be fine tuned by adjustment of

the structure of the magnetic island that form the divertor
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Applying a stationary divertor control current allows to

increase the divertor neutral pressure by up to 50%
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Increasing the divertor island size allows to increase the divertor neutral

pressure by up to 50% compared to small island configuration
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Particle flux detachment develops together with power

detachment and pressure build up due to increasing radiation
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Particle flux detachment develops together with power

detachment and pressure build up due to increasing radiation
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Both, heat and also particle fluxes are detached but still a high neutral pressure
of up to 6.5 10-* mbar are reached! What is behind this interesting feature? endelsein
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Particle flux detachment can be combined with sustainment of neutral

particle exhaust under power detachment in the island divertor

EMC3-Eirene
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Particle flux detachment can be combined with sustainment of neutral

particle exhaust under power detachment in the island divertor

EMC3-Ei . . .
rrene Distribution of neutrals in island divertor module

(SDC, Icc=2kA, D=0.5m?/s, P=5.8MW, I /T";=4%) . h i . .
100 : . : : 110 defines neutral influx T, yo into pumping domain.

5 {1 & Intuitive model: [Y.Feng etal., W7-X workshop, 2017]
E \\ 1 §_ [Y. Feng et al., Nuclear Fusion 56 (2016) 126011]
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parameters in island
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H-atom distribytfon * Increasing f.,4 reduces T, and hence increases
ionization length scale ;,, also n, ., is reduced

* More neutrals can enter the pumping domain
Wendelstein
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3D modeling predicts that f,., moderates the neutral ionization distribution

such that an increase of };, yields increasing p, with reduced @,

EMC3-Eirene . . . « . .
(SDC, Icc=2kA, D=0.5m?/s, P=5.8MW, I /T',=4%) Dls_trlbutlon of qeutrals in |s_Iand dlver_tor modu_le
100 : . : : 110 defines neutral influx T, yo into pumping domain.

Intuitive model: [Y.Fengetal., W7-X workshop, 2016]
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H-atom distribution _ through frrad
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7 mean ionization length scale
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[Y. Feng et al., Nuclear Fusion 56 (2016) 126011] W
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Particle flux detachment can be combined with sustainment of neutral @
\W

particle exhaust under power detachment in the island divertor

EMC3-Eirene . . cen
(SDC, lcc=2kA, D=0.5me/s, P=5.8MW, [/ T'=4%) Experimental data support this intuitive model
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Particle flux detachment can be combined with sustainment of neutral Cb\'@

particle exhaust under power detachment in the island divertor

EMC3-Eirene

(SDC, lcc=2kA, D=0.5me/s, P=5.8MW, [/ T'=4%) Experimental data support this intuitive model
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\ No p, roll-over is observed in the experiment 7-X
» due to f,.q limit from ECH heating scenario /f \




The radiation fraction is dependent of the heating power for a given density range —

this is the basis for the regulation of divertor temperature in the island
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The radiated fraction depends on density which in turn is defined by the available Wendelstam
heating power through ECRH - this sets the stage for the detached regime. %
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Radiation in detached state is localized predominantly around separatrix — exact

resolution so far very challenging due to limited resolution of bolometer

#20180814.024 Bolometer (HBC) chord-brightness
avemis

0.097

. 0.16
0.21

-0.020

0.039

Exact power balance in the plasma edge layer is a high priority topic to disentangle endelsein

radiation contributions X
23 /




Radiation in detached state is localized predominantly around separatrix — exact
resolution so far very challenging due to limited resolution of bolometer

radiation intensity

Small Medium
island island

time (s)

0.1
Radiation localized Radiation fills Radiation reaches
at strike point island domain separatrix

Exact power balance in the plasma edge layer is a high priority topic to disentangle endelsein
radiation contributions — modeling suggests radiation inside SOL up to f,,4 ~0.8 %W

24




Carbon impurity source and C-ll line emission define the local

radiation equilibrium which detaches from surface

Detachment
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Carbon impurity source and C-ll line emission define the local

radiation equilibrium which detaches from surface

20181010.035 C-ll (711.5nm) Photon Flux
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Carbon radiation distribution is followed by position of 15 eV

isothermal surface in island divertor domain

Iso-thermal surface (T, ~15 eV) LCFS
moves inward with radiation front.  Detachment k
transition
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Outline of this talk in form of an executive summary

This detached island divertor regime is reached with minimal feedback control in a
reliable fashion and the divertor operational point is defined through sufficient
radiative losses at a given input power.

The geometry of the magnetic islands forming the divertor allow to fine tune the
divertor neutral distribution for maximized neutral pressure in the detached state.

This island divertor regime is compatible with steady state particle exhaust
for the upcoming high-performance campaign of W7-X.

Wendelstein

pa




Linear scaling of plasma density with input power enables build up of

sufficient divertor neutral pressures and maximize by island size increase

Data were averaged over stable detached windows for various experimental programs with [0.75<f,,4<0.9]
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Linear scaling of plasma density with input power enables build up of

sufficient divertor neutral pressures and maximize by island size increase

Data were averaged over stable detached windows for various experimental programs with [0.75<f,,4<0.9]

27

Line integrated density ne, L.i. [10"° m]

13

12 ¢

11}

10

Regression result: y=0.87702* x

| v & 1 ®

Icc=2.5kA
I.c=2.0kA
I.c=1.0kA
1.c=0.0kA

- Linear regression

2 4

6

Power [MW]

Divertor neutral pressure [104 mbar]

-~J

(=2]

(&}

EN

w

N

Regression result: y=0.85838" x

c=2.5kA
c=2.0kA
c=1 .OkA
I.c=0-0kA

- Linear regression

le
e
e

—
\l

8 9

10

11 12

Line integrated density ne, L.i. [10'° m]

The divertor neutral pressures obtained scale favorably towards steady state
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Pumping particle flux level reached under reliably detached

conditions is compatible with exhaust requirements for steady state

+ Basic observation: increase of neutral back pressures of <8.0 104 mbar averaged across
all available pump ducts for after Boronization from <5.0 10-5> mbar before Boronization

» Existing pumping capacity from Turbo-Pumps: 10 x 3 x 1250 1/s=37500 Itr. Hydrogen /s
+ Expected pumping capacity with Cryo-pump: 70.000 Itr. Hydrogen /s

Pumped flux I'pymp 5.2 1020 H2/s 9.25 102° H2/s

Fueled flux I, 5.0102°-1.0 102t H2/s

Based on example 20180814.024 with 8.0 10 mbar averaged divertor pressure

Pumped flux Tpump 9.0 101 H2/s 1.6 10%° H2/s

Fueled flux I, 2.2 102°-2.0 1022 H2/s Does not scale, low n,

Executed based on example 20180801.039 and 20171207.024 with 5.0 10-°> mbar averaged divertor pressure W
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Summary and conclusions

The attractive detached island divertor regime A possible hierarchy of the process
was reached through intrinsic radiation scaling
with density, which is defined by the input power. Input power level defines

density, ®.cand f.,qlevel

Magnetic island size, magnetic connection @
length and strike line position as actuators

An tuned by local T, detachment

This regime was only limited by input energy @

limits, which will be overcome with the
actively cooled High-Heat Flux (HHF) divertor.

Heat and particle flux detachment with
large enough neutral source access to

The results so far have laid ground for a pump domain for steady state exhaust
promising outlook on the overall steady state

compatibility of the island divertor concept. Wegdeltin W
29 ﬁ




Appendix



Carbon charge states emit across the island divertor volume featuring a

quadratic dependence on density which defines divertor T,

Quadratic rise of carbon line radiation close to the target (C-lll), in the island domain (C-1V) and
around separatrix (C-VI) supports facilitation of detachment by intrinsic impurity radiation
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Carbon as intrinsic impurity supports the necessary radiative losses Y-
localized inside and in the close vicinity of the island domain. 7%@
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The divertor neutral pressure level depends on density scaling with

increasing heating power — access to detachment for f,,4>0.75

Averaged divertor modules

10 80
= Heat and particle flux detachment
g domain with stable neutral pressure
8 L

E g 60|
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Radiative fraction Radiative Fraction
At a radiated fraction of 0.75 < f,,4 < 0.9 a saturated neutral pressure
p, regime is seen with p, being set by the plasma density
A3




The volume of the magnetic island is predicted to serve as a reliable @
\W

interface layer with a beneficial radiation and ionization equilibrium

Island size dependence of C radiation around islands at f,,,=0.8 .

10

radiation intensity

Small Medium ' ¥ Large \
island island island

0.1
Radiation localized Radiation fills Radiation reaches
at strike point island domain separatrix

[V. Feng et al., Nuclear Fusion 56 (2016) 126011] Interplay of radiation distribution with power

dissipation and divertor neutral capture is key Wendelstein
to understand the island divertor! 7%
A4 /




The EMC3-EIRENE model in a nutshell

Magnetic field model Divertor geometry Model
Equilibrium field: I paresister
o | FLARE Peus, Fotge
Vacuum RMP field: Field line tracing & analysis Dy, Xer,Xis
Coil g{eometry
+ Biot Savart * 3D finite flux tube grid ¢
or :
Plasma response: EMC3  Edge plasma| Sources/Sinks

M3D-C1, MARS-F, ... 5,5, 5.0, 50

Fluid model

rate coefficients (ov), (cvE)

Plasma data EIRENE Neutral gas
>
n,M,T,,T, Kinetic model

Atomic & Molecular data
AMJUEL, HYDHEL, ADAS

Figure courtesy of H. Frerichs

[Y. Feng et al., JNM 266-269 (1999) 812]  [Y. Feng et al., PPCF 59 (2017) 034006] Wendelstein

7-X
[Y. Feng et al., Contri. Plasma Phys. 54 (2014) 426-431] ﬁ W
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The radiation fraction is dependent of the heating power for a given density range —

this is the basis for the regulation of divertor temperature in the island

EMC3-EIRENE predicts comparable

. scaling of radiation in island with densit
1+ 3 Heat and particle flux 9 y
................................ ‘ detachment domain ; T T T T T
¢ with stable neutral i 6 5.8MW. I..=2KA. 4%
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The radiated fraction depends on density which in turn is defined by the available et
heating power through ECRH - this sets the stage for the detached regime. ﬁ
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Dependence of target parameters on f,,4 is consistent between experiment and

EMC3 model, but a significantly weaker dependence is found in measurement

EMC3-EIRENE modelling
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EMC3 model, but a significantly weaker dependence is found in measurement

Dependence of target parameters on f,,4 is consistent between experiment and @
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Dependence of target parameters on f,,4 is consistent between experiment and

EMC3 model, but a significantly weaker dependence is found in measurement

EMC3-EIRENE modelling
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Particle flows are reduced at transition into detachment

Evolution in time of single line
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