

Reliable RMP-ELM Suppression for High-Beta Long Pulse Operation in KSTAR

Y.M. Jeon¹, J.-K. Park², S.M. Yang², Y.K. In³, G.Y. Park¹, M.W. Kim¹, C. Paz-Soldan⁴, T. Evans⁴, N. Logan⁴ ¹National Fusion Research Institute, Korea ²Princeton Plasma Physics Laboratory, US ³Ulsan National Institute of Science and Technology, Korea ⁴General Atomics, US

PPPL, Dec. 16 (2019)

Background and issues

• In 2016~2017, low-n RMP-ELM suppression has been substantially improved in KSTAR

- What was the key element? and how we understand it?
 - \rightarrow Plasma shape effect on RMP coupling
 - \rightarrow Anything else? : density, rotation, etc

- Applicable to high beta, long pulse operation?
 - \rightarrow Challenging to high beta plasmas

Substantial improvement of low-n RMP-ELM suppression achieved in 2016~2017 KSTAR

More stable and robust, even universal ELM-suppressions enabled

Record-long ELM-suppressions achieved for both n=1 & n=2 RMPs

- ELM suppressions achieved for both n=1 and n=2 RMPs with same conditions (universality)
- Much long pulse ELM-suppressions enabled : ~10s in 2016 → ~34s in 2017 (stable/robust)

4

New operation regimes for ELM-crash suppression discovered

A small change of plasma shape was a key

Substantial improvements of RMP-ELM suppression achieved in 2016 by a small change of plasma shape

2019-YMJ

ELM suppression was sensitive to a small change of plasma shape, particularly triangularity

Decreasing R_{X,low} (δ_{low} ↑)
ELM : suppressed → mitigated

• R_{X,low}=1.42m played as a lower bound for ELM suppression in 2016

ELM suppression was sensitive to a small change of plasma shape, particularly triangularity

- Increasing $R_{X,low}$ ($\delta_{low} \downarrow$)
 - Plasma locking occurred
 - \rightarrow Core plasma response dominant
- R_{X,low}=1.46m played as a upper bound for ELM suppression in 2016

 $\begin{array}{l} \mbox{A narrow shape window, similar to } q_{95} \\ \mbox{window, obtained} \\ \mbox{-} 1.42 \leq R_{X,low} \leq 1.46m \mbox{($\Delta R_{X,low}$ $\sim 4.0cm$)$} \\ \mbox{-} 0.70 \leq \delta_{low} \leq 0.78 \mbox{($\Delta \delta_{low}$ ~ 0.08)} \end{array}$

Unusual singular shape response observed in plasma locking response with q_{95} dependence

- Always locked, no matter how R_{X,Low} approaches to ~1.43m
 - → $R_{X,Low} \sim 1.43m$ is a singular point for $q_{95} \sim 6.0$
- For q_{95} \sim 5.0, it seems the singular $R_{\chi,Lower}$ is \sim 1.46m
- → The origin of upper bound in R_x window

Linear ideal MHD modeling analysis (IPEC) could capture a part of nature, associated with shape effect

- Based on mag. EFIT (i.e. no pedestal)
- Improved coupling as δ reduces
 - May explain why ELMs re-appeared when δ increased
- Fields amplified when R_x approached to a certain value (~1.46m)
- Well in line with experimental observation
- Suggesting that ELM re-appearance when R_x reduced might be due to reduction of resonant fields

Stronger RMP fields were able to expand the lower bound of R_X window, as expected

ELM-suppression maintained for wider range of $R_{X,lower}$

• All valuable results in 2017 were obtained with R_x=1.38m plasma shape 12

2019-YMJ

Plasma density and rotation are also important as much as plasma shape

Plasma shaping alone is not enough to ensure the success of ELM-suppression

- All under same condition except R_{X,Lower}
 - NB1-A/C = 100/70keV=2.8MW
 - $\beta_{N} \sim 2.1, \beta_{P} \sim 1.65$
- No ELM-suppression
- Locked at I_{RMP}=1.3kA/t
- ➔ Quite low locking threshold. Why?
- ELM-suppressed
- I_{RMP}=1.61~1.94kA/t
- $\rightarrow \Delta I_{RMP} \sim 0.33 kA/t$

ELM-suppressed

 $\rightarrow \Delta I_{RMP} \sim 0.28 \text{ kA/t}$

I_{RMP}=1.54~1.82kA/t

- Nominal ELM-sup. window

Additional fueling is an effective way to expand the operation window by increasing locking threshold

- All under same condition except R_{X,Lower}
 - NB1-A/B = 100/90keV=3.4MW
 - $\beta_N \sim 2.3$, $\beta_P \sim 1.80$

- No ELM-suppression
- Locked at I_{RMP}=1.5kA/t
- Low locking threshold
- ELM-suppressed
- I_{RMP}=1.63~2.43kA/t
- $\rightarrow \Delta I_{RMP} \sim 0.80 \text{kA/t}$

Additional fueling is an effective way to expand the operation window by increasing locking threshold

- Increased density is clearly helpful to increase locking threshold
- Also, the difference in rotation profile is important
 - flat vs peaked profile
 - pedestal gradient

#022737: Edge rotation increases when ELMs suppressed

#022737: Edge rotation increases when ELMs suppressed

Note that rotation increase appeared rather globally (not edge localized)

Low-n RMP-ELM suppression is challenging for high beta

Low-n RMP-ELM suppression is challenging for high beta

Concise summary and discussion

• Recently, low-n RMP-ELM suppression has been substantially improved in KSTAR, particularly taking into account the plasma shape dependence.

• Various experimental observations suggest that the plasma locking is the main obstacle for reliable ELM-suppression by low-n RMP

• Theory/modeling support is highly required in KSTAR for further physics understanding such as TM1, MARS, etc in collaboration with PPPL.