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RMP driven ELM suppression 

• RMP driven ELM crash suppression 

 Peeling-ballooning mode (PBM) [1,2] is the main instability  
resulting in large ELMs. 

 Resonant MP (RMP) can suppress the ELM crash [3-5]. 
 Suppression has a very narrow operation window [6]. 

[4] W. Suttrop et al., PRL 106 (2011), 225004 
[5] Y. M. Jeon et al., PRL 109 (2012), 035004 
[6] J. K. Park et al., Nature Physics 14 (2018), 1223 

[1] J. W. Connor, PPCF 40 (1998), 191 
[2] P. B. Snyder et al., NF 44(2004), 320 
[3] T. E. Evans et al., PRL 92(2004), 0235003 

[MP configuration (KSTAR),  
D. Kim (PPCF 2010)] 

 Mechanism is important for reliable ELM control 

• Increased pedestal transport by RMP application  

 RMP can increase the radial transport of the pedestal. 
 It can degrade the pedestal gradient by forming the 

stochastic layer [7-9]. 

[7] R. Fitzpatrick et al., POP 5 (1998), 3325 
[8] M. Heyn et al., NF 54 (2014), 064005 
[9] N.M. Ferraro et al., POP 19 (2012), 056105 

[ RMP driven stochastic layer, 
A. Wingen (PPCF 2015)] 

3/31 



S.K. KIM | MF MT 200302, PPPL  | Page 

RMP driven ELM suppression 

• “Initial” understanding of RMP driven ELM suppression 

𝑷 

𝑹 

RMP 
𝑷 

𝑹 

Island 

𝑷 

𝑹 

Stochastic Layer 

𝑷 

𝑹 

Transport↑ 
Linearly Stable 
to PBM 

 No ELM  

𝛁𝑷 ↓ 
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Possible limits of ‘initial’ explanation 

[ 2D-ECEI, J.Lee  (PRL 2016) ] 

ELMy Supp. • Interesting features in RMP driven ELM crash suppression 

 PBM-like filaments remain during the suppression phase [1,2]. 
 Mode structure is locked when suppression is achieved. 

  Experimental observation found the importance of 𝝎⊥,𝐄×𝐁 ≈ 𝟎 [3]. 

Missing keys ? • Role of micro-instabilities 
• Role of MHD characteristics 

 This study is focused on MHD behavior 

[1] J. Lee et al., PRL 117 (2016), 075001 
[2] J. Lee et al., NF 59 (2019), 066033 
[3] C. Paz-Soldan et al., NF 59 (2019), 056012 
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[ Mode rot. bifurcation in 
suppression, J.Lee  (NF 2019) ] 

 NL simulation including both RMP and PBM is conducted. 
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Numerical tools 

 Toroidal X-point geometries with scrape-off layer is included. 

[ RMP on JOREK boundary for KSTAR, ERGOS ] 

[1] G. T. A Huysmans et al, PPCF 51 (2009), 124012 
[2] F. Orain et al., POP 20 (2013), 102510 
[3] M. Becoulet et al., Nucl. Fusion 48 (2008), 024003 

1

𝑅2

𝜕𝜓

𝜕𝑡
= 𝜂 𝑇 𝛻 ∙

1

𝑅2
𝛻⊥𝜓 − 𝐵 ∙ 𝛻𝑢 − 𝜏IC

𝛻𝑝e
𝜌

 Ohm’s law 

𝜕𝜌

𝜕𝑡
= −𝛻 ∙ 𝜌𝑣 + 𝛻 ∙ 𝐷𝛻𝜌 + 𝑆ρ    Continuity eqn. 

𝜌
𝜕

𝜕𝑡
+ 𝑣 ∙ 𝛻 𝑣 E + 𝑣 || = −𝛻 𝜌𝑇 + 𝐽 × 𝐵 + 𝑆v − 𝑣 𝑆ρ + 𝜇Δ𝑣 − 𝛻 ∙ Πneo Ion Momentum eqn. 

𝜕 𝜌𝑇

𝜕𝑡
= − 𝑣 E + 𝑣 || ∙ 𝛻𝜌𝑇 − 𝛾𝜌𝑇 𝛻 ∙ 𝑣 E + 𝑣 || + 𝛻 ∙ 𝜅𝛻𝑇 + 1 − 𝛾 𝑆T  

Energy eqn. 

𝑣 = 𝑣 E + 𝑣 i∗ + 𝑣 ||  

Fluid model is included 

w/ toroidal rotation 
w/ diamagnetic effect 
w/ neoclassical viscosity 

 4-fields Reduced MHD equation [2] is used.  

[ JOREK grid for KSTAR ] 

• JOREK (3D Nonlinear MHD simulation code) [1]  

 Vacuum MP is calculated. 

• ERGOS (Vacuum RMP field code) [3] 
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Reference plasma 

[1] J. Lee et al., Nucl. Fusion (2019), 066033 
[2] Y. M. Jeon et al., PRL 109 (2012), 035004 

• Target discharge and equilibrium 

 ELM suppression discharge (#18594) [1] of KSTAR is selected 

 𝑩𝐓 = 𝟏. 𝟖 𝐓, 𝑰𝐩 = 𝟔𝟔𝟎 𝐤𝐀, 𝒒𝟎~𝟏, 𝒒𝟗𝟓~𝟒,𝜷𝐩 = 𝟏. 𝟎 , 𝒏 𝐞 = 𝟑. 𝟑 × 𝟏𝟎𝟏𝟗 𝐦−𝟑 

[#18594 overview] 

𝐷α[a. u] 

𝐼RMP kA /20 ELM suppression  𝐼p [MA] 

𝑛 e [10
20m−3] 

 ELM suppression is achieved with n=2 (𝝓 = 𝟗𝟎°), 𝑰𝐑𝐌𝑷~𝟑. 𝟕𝐤𝐀 RMP configuration [2]. 

8/31 
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Reference plasma - Profile & EFIT 

• Kinetic profile and EFIT construction 

 We developed GFIT & GEFIT package to construct a kinetic profile and EFIT in KSTAR.  

 They are in full operation at the KSTAR computing server (one of the standard tool). 

 Numerical/Theoretical corrections are applied to solve obstacles in theses constructions. 

[ GFIT & GEFIT package, KSTAR  ] 
9/31 
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RMP driven Plasma response - Approach 

• Numerical modeling of MP application 3𝑘𝑚/𝑠 

 Vacuum field approximation is used on the boundary. 

 Boundary condition is modified with vacuum RMP field (𝜹𝝍𝐩𝐨𝐥,𝐑𝐌𝐏). 

 Field penetration and the response (only n=0 & 2) are self-consistently 
calculated. 

𝝍𝐛𝐝𝐲 = 𝝍𝐛𝐝𝐲,𝟎 + 𝜹𝝍𝐛𝐝𝐲,𝐑𝐌𝐏 

[𝛅𝝍𝐩𝐨𝐥,𝐑𝐌𝐏 in the simulation] 

boundary 

 Kink-tearing response is reproduced. 
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Kink-tearing response - Kink 

• Kink response 

[Kink-peeling response] 

 It has an edge localized structure. 

 It results in a 
𝒗𝑬×𝑩 convection layer on the pedestal. 

Kink 

[Kink-peeling structure] 

 It has large deformation at X-point. 

12/31 
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Plasma response - Tearing 

• Tearing response 

 As a result, stochastic layer is formed. 

 Perturbed current shields the external field. 

Tearing 

[Poincare plot] 

Shielded 
Shielding  
current 

Stochastic layer 

𝒗⊥𝒆 = 𝟎 layer 

[Perpendicular flow profile] 

 𝒗⊥𝒆 ≈ 𝟎 layer and finite resistivity in the edge 
weaken the field shielding. 

 Field penetration occurs in the pedestal region. 
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Increased pedestal transport - Agreement 

• Pedestal profile degradation 

 Pedestal profile (n=0) is degraded. 

 𝑻 pedestal shows a similar tendency in the 
experiment and simulation. 

 Radial transport increases due to 

 - 𝒗𝐄×𝐁⊥ convection (Kink). 
 - Stochastic layer (Tearing). 

 Density pedestal is governed by  𝒗𝐄×𝐁,⊥. 

 It is consistent with the trend that density pump-out 
increases with kink response [1,2]. 

[1] Y. Liu et al., PPCF 58 (2016), 114005 
[2] C. Paz-Soldan et al., Nucl. Fusion (2016), 056001 

 However, the decrease in 𝒏 𝒆 from the experiment is 
three times larger than the simulation.  

[Pedestal degradation vs 𝑰𝐑𝐌𝐏] [Radial fluxes vs 𝑰𝐑𝐌𝐏] 

[𝑳𝐓𝐢
−𝟏 vs 𝑰𝐑𝐌𝐏] 

𝜓𝑁 = 0.98  
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Increased pedestal transport - Disagreement 

• Pedestal profile degradation 

 𝚪𝐄×𝐁,𝐌𝐇𝐃 can not solely explain the pump-out. 
 Role of NTV and micro instability is also important. 

[Growth rate spectrum] 

Stabilized 

 The linear growth rate of PBM decreases with pedestal gradient. 

[1] T.M. Bird et al., NF 53 (2013), 013004 
[2] I. Holod et al., NF 57 (2017 ), 016005 
[3] G.J. Choi and T.S. Hahm NF 58 (2018), 026001 
[4] R. Hager et al., APS-DPP (2019), Florida, USA 

[5]F.L. Waelbroeck et al., NF 52 (2012), 074004 
[6] T. Rhee et al., NF 55 (2015), 032004 
[7] W. Zhu et al., PRL 96 (2006), 225002 
[8] J.-K. Park et al., POP 16 (2009), 056115 

 Change in 𝑽𝝓 pedestal is also not consistent. 

[𝑳𝐕𝛟
−𝟏  vs 𝑰𝐑𝐌𝐏] 

𝜓𝑁 = 0.98  

 This study does not include 

 - Effect of micro-instability [1-4] 
 - Magnetic flutter [5] and proper transport model [6]  
 - Neoclassical Toroidal Viscosity (NTV) [7,8] 

 These transport mechanisms will be needed to fully 

explain the RMP driven profile degradation. 

15/31 
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Natural PBM simulation (without RMP) 

• Linear PBM simulation 

• Nonlinear PBM calculation   

 Linearly dominant n is 𝒏𝐄𝐂𝐄𝐈 = 𝟏𝟏 ± 𝟏, 𝒏𝐬𝐢𝐦 = 𝟏𝟐. 

 Poloidal velocity of mode is 𝒗𝛉,𝐦𝐨𝐝𝐞~𝟑 𝐤𝐦/𝐬 in 
both cases (ECEI & simulation). 

 𝒗𝛉,𝐦𝐨𝐝𝐞 ≈ 𝒗𝛉,𝐄×𝐁 (LAB, ion - diamagnetic direction) [1,2]. 

 Mode crash is reproduced during nonlinear phase. 

 Large heat flux occurs with pedestal collapse. 

[Mode amplitude in NL phase] [Pedestal degradation  
after ELM] 

 𝚫𝑾𝐄𝐋𝐌,𝐬𝐢𝐦 ≈ 𝟖𝐤𝐉 (𝚫𝑾𝐄𝐋𝐌,𝐞𝐱𝐩 ≈ 𝟕 ± 𝟒𝐤𝐉). 

[1] Morales J. 2016 Phys. Plasmas 23 042513 
[2] Becoulet M. et al 2017 Nucl. Fusion 57 116059 

[ECEI and JOREK n=12 results] 

3km/s 

 Experimentally relevant ELM with 𝒗𝛉,𝐦𝐨𝐝𝐞 ≈ 𝒗𝛉,𝐄×𝐁 

is obtained.  

17/31 
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RMP-PBM simulation 

• Effect of RMP on PBM 3𝑘𝑚/𝑠 

[Nonlinear evolution of MHD modes with RMPs] 

 PBMs are affected by RMP driven plasma response via mode coupling. 

 Mode crash suppression is achieved with 𝑰𝐑𝐌𝐏~ 𝟒 𝐤𝐀 (~3.7 kA in exp.). 

 PBM suppression is reproduced with experimentally relevant RMP. 

Mitigated 

𝐼RMP = 2kA 𝐼RMP = 4kA 

Suppressed 

𝐼RMP = 1kA 

𝑊kin Natural ELM 

1.25 

1.0 

0.75 

0.5 

0.25 

𝑾
𝐤
𝐢𝐧

 [
a

.u
.]

 

0 

 Mode mitigation occurs with small 𝑰𝐑𝐌𝐏 (≲ 𝟐𝐤𝐀). 

 Mode suppression can be related to the reduced pedestal gradient. 
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Coupled RMP & PBM  

• Comparison between w/ and w/o mode coupling case 

- A bursty behavior in its nonlinear phase 

 Nonlinear PBM simulation w/o mode couplings shows 

 Therefore, suppression of PBM with RMP is related to both  

- Reduced pressure gradient 
- Coupling of PBMs and RMP driven plasma response  

 Nonlinear PBM simulation w/  mode couplings shows 

- Mode suppression without bursty behavior  

 Degraded pedestal due to RMP (𝑰𝐑𝐌𝐏 = 𝟒𝐤𝐀) is included in 
both cases. 

[Mode amplitude of PBM with n=10 ] 
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Coupled RMP & PBM  

• Increased transport with coupled RMP-PBM 

 Tearing component decrease with the mode coupling effect for 𝑰𝐑𝐌𝐏 ≤ 𝟐 𝐤𝐀.   

𝒒 = 𝟒. 𝟓 𝝍𝐍 = 𝟎. 𝟗𝟖  

 Pedestal transport is increased by the coupling effect. 

• Larger stochastic layer and pedestal transport 
• Smaller pedestal gradient (Reduced instability source) 

 Effect of mode coupling on the perpendicular flow is small. 

 Magnetic island is amplified under the coupling effect when suppression is achieved. 

Decrease 

20/31 
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Coupled RMP & PBM  

• Increased energy transfer with coupled RMP-PBM 

[1] M. Becoulet et al., PRL 113 (2014), 115001 
[2] H. Jhang et al., NF 57 (2017), 022006 
[3] P.W. Xi et al., PRL 112 (2014), 085001 

 Interaction between harmonics increases [1] with RMP. 

• Amplified energy transfer between harmonics 

Dominant 
modes 

ELMy Supp. 

 Vorticity 𝑼𝟎𝟎 in the pedestal is reduced. 

• More evenly distributed perturbed energy among harmonics [2] 

Reduced 

 Catastrophic growth of unstable mode can be prevented [3]. 
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Coupled RMP & PBM - Suggestion 

• Effect of coupled RMP-PBM 

• Prevent catastrophic growth • Reduced source (∇𝑃ped  ) 

• Increased pedestal transport 

• Resonant magnetic field (RMP) 

ELM Crash Suppression 

• Kink, NTV, 
Micro-instability 

• Magnetic  
Island 

• Increased spectral transfer 

• Mode coupling 
with PBM 

 Large mode coupling 
effect can be favorable. 

How? 

Larger island 

22/31 
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PBM locking 

• Locking of mode structure 3𝑘𝑚/𝑠 

 Mode locking (bifurcation) is one of the major differences between 

mitigation and suppression. 

 PBM is locked (𝒗𝛉,𝐏𝐁𝐌 → 𝟎) when suppression is achieved (𝑰𝐑𝐌𝐏~𝟒 𝐤𝐀). 

[ 𝒗𝛉,𝐏𝐁𝐌 in ELMy and Suppressed case] 

Supp. w/o RMP 
& Mitigate 

 Similar trend is observed in the previous experiment [1, 2]. 

[1] J. H. Lee et al., APS (2019, Ft Lauderdale, USA ) 
[2] R. Nazikian et al, PRL 114 (2015), 105002  

[Time evolution of 𝒗𝛉,𝐏𝐁𝐌 of dominant n] 

 When mode locking occurs, 𝒗𝛉,𝐏𝐁𝐌 and 𝒗𝛉,𝐄×𝐁 are decoupled.  

  𝒗𝛉,𝐏𝐁𝐌: −𝟑 → 𝟎𝐤𝐦 𝐬  while 𝒗𝛉,𝐄×𝐁: −𝟑 → −𝟖 𝐤𝐦/𝐬  

∴ 𝒗𝛉,𝐏𝐁𝐌,𝐑𝐌𝐏 = 𝒗𝛉,𝐏𝐁𝐌,𝐰𝐨𝐑𝐌𝐏 + 𝚫𝒗𝛉,𝐑𝐌𝐏 

23/31 
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PBM locking - Role on the mode coupling 

• PBM locking and mode coupling 

 Constant or sustained phase difference (Δ𝛿) b/w RMP and 
PBMs is favorable to strong mode interaction. 

 RMP driven plasma response is static in space. 
  𝒗𝛉,𝐏𝐁𝐌 ≈ 𝟎 for 𝛥𝛿 ≈ const. 

        Advantageous small 𝒗𝛉,𝐏𝐁𝐌  (or 𝒗𝛉,𝐄×𝐁 → 𝟎) Not  
suppressed 

        Keeping the spatial overlapping of mode structures 

[ Time evolution of 𝐜𝐨𝐬𝜟𝜹] 

 PBM locking can be an advantageous consequence  

or reason for one branch of ELM suppression 

 PBM locking may be difficult to occurs with large 𝒗𝛉,𝐄×𝐁  in pedestal. 

∵ 𝒗𝛉,𝐏𝐁𝐌,𝐑𝐌𝐏 ≈ 𝒗𝛉,𝐄×𝐁 + 𝚫𝒗𝛉,𝐑𝐌𝐏 → 𝟎 

 PBM locking and suppression are not achieved with increase 𝒗𝛉,𝐄×𝐁 . 

24/31 
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Conclusion - I 

 Nonlinear effect of RMP on the pedestal has been investigated. 

 Kink-tearing response is observed under RMP 

 Axisymmetric equilibrium change accompanied by Kink + Tearing non-axisymmetric features. 

 Mean (n = 0) pedestal profile degradation (Kink + Tearing) 

• 𝑻   pedestal: Stochastic layer (Tearing part) 
• 𝒏𝐞 pedestal: 𝚪𝐄×𝐁 Convective flux (Kink part) 

 Additional transport mechanism is needed to fully explain the pedestal 
degradation by RMP. 

 NTV & Micro instabilities will play important role. 
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Conclusion - II 

 Degradation of pedestal gradient may not solely explain ELM suppression. 

 ELM is nonlinearly suppressed by RMP.  

• Reduced pedestal pressure gradient. 
• Mode coupling b/w PBMs and n = 2 RMP driven modes. 

 ELM suppression accompanied by 

 Mode coupling b/w ELMs and n = 2 RMP driven modes is important. 
• Increased pedestal transport by enlarging the magnetic island 
• Prevented mode crash by increasing energy transfer b/w harmonics 

 Coupling between RMP and ELMs may explain the locked filament structure during 
the suppression phase in Exp. 

27/31 
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Conclusion - III 

• 𝒗𝛉,𝐄×𝐁 ≤ 𝒗𝛉,𝐏𝐁𝐌 ≤ 𝒗𝜽,𝐄×𝐁 + 𝒗𝜽,𝐢∗/𝟐 at linear phase w/o RMP. 
(Depends on the collisionality and dominant n) 

 Favorable conditions for the mode coupling are 

 Plasma conditions for the PBM locking. 

• Small 𝒗𝛉,𝐏𝐁𝐌 → 𝟎 is advantageous. 

 It may be correlated with the importance of 𝒗𝛉,𝐄×𝐁 ≈ 𝟎 in ELM suppression. 

 PBM locking is distinguished feature of ELM suppression. 

 Strengthened mode coupling b/w RMP and PBM 

 Good agreement with experimental observation via ECEI 

28/31 
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Collaboration with PPPL 

 Integrated simulation with JOREK and PENTRC 

 Include NTV in the simulation for the particle and momentum transport. 
 PENTRC is connected to JOREK for the NTV calculation. 
 Work is on progress. 
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JOREK PENTRC 

𝐵, 𝑛, 𝑇, 𝜙, 𝑣 , 𝜉   

𝛤NTV, 𝜏NTV 
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[NTV results, JOREK+PENTRC] 

𝝍𝑵 

𝚪𝐍𝐓𝐕 
𝝉𝐍𝐓𝐕 



Thank You 
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Backup - RMP driven ELM suppression 

• Direct effect of RMP on PBMs 

 RMP can directly affect ELM “crash” suppression. 

 Effect of RMP on the PBMs are.. 

 Linear effect of RMP induced field structure on PBM [1, 2]. Linear effect of 3D field on PBM 

 Nonlinear MHD simulations on the RMP driven KPM [3] 
and ELM mitigated/suppressed case [4,5]. 

Nonlinear coupling b/w RMP and PBM 

[1] M. Willensdorfer et al., PRL 119 (2017), 085002 
[2] M. L. Mou et al., Phys. Plasma 25 (2018), 082518  
[3] F. Orain et al., Nucl. Fusion 57 (2017), 022013 

• Bifurcation of poloidal mode rotation 

 Sudden bifurcation of rotation occurs at the suppression phase.  

 The mode rotation becomes very small (𝒗𝛉,𝐦𝐨𝐝𝐞 ≈ 𝟎 ). 

[4] M. Becoulet et al., PRL 113 (2014), 115001 
[5] F. Orain et al., Phys. Plasma (2019), 042503 

 It suggests the possibility of interactions b/w RMP and PBM. 

[ Mode locking in suppression, 
J.Lee  (NF 2019) ] 

 NL simulation including both RMP and PBM is needed. 
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Backup - Limitation of KSTAR EFIT 

• Limitation of KSTAR EFIT 

 There are many obstacles to construct a “good” kinetic profile and EFIT.   

- Diagnostics- 
• Low resolution  
• Uncertainty 

• Bad Channels 

- MSE -  
• Uncertainty 
• Availability 

• Lack of optimized  
parameters for KSTAR 

• Magnetic measurement 

• Kinetic Profile 

• Current profile (MSE) 

• Numerical constraint 

EFIT (Equilibrium) 

• Overall Profile fitting 

• Pedestal Profile fitting 

Kinetic Profile 

 There is no standard of “good” EFIT in KSTAR. 

32/31 



S.K. KIM | MF MT 200302, PPPL  | Page 

Backup - Numerical/Theoretical compensation 

• Kinetic profile correction 

 Various numerical filters & function based fitting 

 Multi diagnostic based least square fitting 

 Thomson, ECE, Inter/Reflectometry and CES 

 Theoretical model based pedestal profile 

 ELM toroidal n (𝒏𝐄𝐂𝐄) and ELM size (𝚫𝑾𝐄𝐋𝐌) 

• KSTAR parameter optimization 

 Optimization through brutal force approach 

• Current profile correction 

 Theoretical model based current profile 

 Synthetic MSE vs Experimental MSE 

 Edge bootstrap current 

[ Experimental vs Simulated MSE] 
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Backup – reference EFIT 

• Kinetic profile and EFIT construction 

 GFIT & GEFIT package is developed to construct a kinetic profile and EFIT in KSTAR.  

 They are in full production at the KSTAR computing server (one of standard branch). 

𝝍𝐩𝐨𝐥(𝑹, 𝒁) 

[Kinetic profile & EFIT, GEFIT package] 

𝑻𝐢, 𝑽𝛟 

𝒋𝛟 

𝒒 

𝑻𝐞, 𝒏𝐞 

1.0 1.5 2.0 2.5
-1.5

0.0

1.5

𝝍𝐩𝐨𝐥 

𝑹[𝐦] 

𝒁
[𝐦

] 

Numerical 
accuracy 

Convergence: 
𝟏𝟎−𝟒 → 𝟏𝟎−𝟏𝟏 

Experimentally 
relevant 

Error: 
N/A → 𝟏𝟒. 𝟓 

 “Good” reference is 

developed for the simulation.  
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Backup - RMP driven ELM crash suppression 

• RMP and divertor heat flux 3𝑘𝑚/𝑠 

 Instantaneous ELMy peak heat flux (𝑸𝒑𝒆𝒂𝒌) decreases with RMP. 

[ELMy peak divertor heat flux induced by PBMs] 

ELMy 

BG 

 Background heat flux increases with 𝑰𝐑𝐌𝐏 due to the enhanced transport to SOL. 

 𝑸𝒑𝒆𝒂𝒌 is drastically reduced for 𝑰𝑹𝑴𝑷 ≥ 𝟑𝐤𝐀 where modes are suppressed. 

 Suppression of PBM with RMP can be related to 

• Reduced pressure gradient 

 PBM suppression is reproduced with experimentally 

relavent RMP configuration 
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Backup - Simulation setup 

 Numerical setup 

[1] Y. M. Jeon et al., PRL 109 (2012), 035004 
[2] R. Hager and C. S. Chang et al., Phys. Plasmas 23 (2016), 042503 

• Target discharge and equilibrium 

 #18594 is selected for the simulation.  

 𝑩𝐓 = 𝟏. 𝟖 𝐓, 𝑰𝐩 = 𝟔𝟔𝟎 𝐤𝐀, 𝒒𝟎~𝟏, 𝒒𝟗𝟓~𝟒,𝜷𝐩 = 𝟏. 𝟎 , 𝒏 𝐞 = 𝟑. 𝟑 × 𝟏𝟎𝟏𝟗 𝐦−𝟑 

 ELMs are suppressed with n=2 (𝝓 = 𝟗𝟎°), 𝑰𝐩~𝟑. 𝟕 𝐤𝐀 RMP configuration [1]. 

 Modified Sauter formula [2] is applied to construct the bootstrap current. 

 Neoclassical constraint (𝒗𝐧𝐞𝐨) is applied to construct the ion-poloidal flow. 

 𝒗𝛉,𝐄×𝐁 in the pedestal region is in the ion-diamagnetic direction. 

 𝑻𝐢 = 𝑻𝐞 is assumed. 

 Adaptive diffusive profile and source are used to sustain the 𝝆, 𝑻, 𝒗𝛟  profiles. 

 Spitzer-like resistivity (x40) and braginskii parallel conductivity are used. 

𝑣θ = 𝑣E×B + 𝑣i∗ + 𝑣||,θ 

[Poloidal flow components] 
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