Machine Learning Predictions of Plasma Transport for Analysis and Control at DIII-D

Joe Abbate, Rory Conlin, Yichen Fu, Ricardo Shousha, Anthony Xing PI: Egemen Kolemen Magnetic Fusion Science Meeting March 9, 2020

Birds-Eye View: Machine Learning for Plasma Control

- We would like to achieve a stable, high performance fusion reaction
 - Need real-time control + offline planning to obtain the states we want
 - Using both machine learning and reduced physics models
- Control actuators and actions are **mostly in** the MHD to Transport timescales

This Talk

- Traditional transport modeling
- Machine learning approach
- Results
- Applications to real time control
- Integrating machine learning into plasma control systems
- Future improvements

Goal:

• Predict plasma state evolution on transport timescales, given present state and actuator settings

Applications:

- Quick estimate of response to actuators
- Real time model-predictive control

Full state of plasma determined by 1D profiles:

- Pressure (P)
- Current (*J*)
- Electron temperature and density (T_e, n_e)
- Ion temperature and density (T_i, n_i)
- Rotation (Ω)

Given state (and actuators), can we predict how plasma will evolve?

Traditional transport modeling

- Use gyrokinetic code to calculate transport coefficients
 - Full calculation (e.g. GYRO, XGC) takes ~months of CPU time
 - Quasilinear approximation (e.g. TGLF, QuaLiKiz) brings down to ~seconds-minutes
- Use transport equations to propagate profiles
 - e.g. TRANSP, ASTRA facilitate this
 - Requires power deposition (GENRAY for ECH, NUBEAM for NBI, etc)
 - Requires evolution of equilibrium (e.g. ISolver)

Downsides of traditional transport modeling

- Some approximations to future data often needed for convergence
 - Requires pedestal model
 - Need to fix some profiles to predict others
- Too slow for realtime use
 - Neural net approximations for transport coefficients, power deposition, pedestal models, etc.
 can possibly fix this (e.g. COTSIM, RAPTOR being developed)^{1,2,3}
- Requires expertise and ad hoc setups
 - OMFIT is ameliorating this⁴
- Still discrepancies between experiments and simulations in some regimes⁵

¹Meneghini et al 2017 Nucl. Fusion 57

²F. Felici et al 2018 Nucl. Fusion 58 (RAPTOR)

³E. Schuster et al 2019 Integrated Robust Control of Individual Scalar Variables in Tokamaks (COTSIM)

⁴Grierson et al 2018 Fusion Science and Technology, 74(1–2), 101–115

⁵S Smith et al 2015 Nucl Fusion 55

Fully Data-Driven Approach

Strengths

- Fast
- Simple
 - No external models
 - No hand-tuning necessary
- Possibly more accurate in some regimes

ML successful in event prediction:

- FRNN (Kates-Harbeck, 2019)
- DPP (*Rea*, 2019)
- MLDA (Fu, 2020)
- TCN (Churchill, 2019)

Weaknesses

- Correlations only
- Only as strong as data
- Non-transferrable?

- ~10,000 DIII-D shots from 2010-2018
- Train neural net on ~200k time samples

Learn f to predict state Δt =200ms into future *x(t)* : T e n_e q $\boldsymbol{\varOmega}$ $x(t+\Delta t)$: Р T_{e} Shape *n*_e $x(t+\Delta t) = x(t) + f[x(t), u(t)]$ q Ω *u(t)* P injected injected target

Neural net to predict state 200ms into future

Model Architecture Convolutional layers to capture gradients of profiles for transport (cf. natural response) (Szegedy, 2015)

 Recurrent layers to capture time history of actuators (cf. forced response) (Gers, 1999)

ML predictions qualitatively accurate

- Test on data from 2019 campaign
- Predicting 200 ms ahead
- Predictions noisy, but qualitatively correct

Preliminary results: ML median error better than baseline

- Baseline: predict no change in profile
- Right: Median absolute error over test set for baseline (orange) and ML predictions (blue)
 - Lower is better
- ML outperforms baseline prediction for all profiles

ML prediction captures most dominant modes

(Abbate, Conlin, in preparation)

Towards Profile Control

- Physics based control generally limited to controlling scalar variables
- Recent advances in profile control very limited

- Plasma is very complex, physics models for control are still lacking
- What can we learn from data?

Model Predictive Profile Control

- Real time predictions allows predictive control
- Simulate different actions in real time

• Take the action to minimize cost function:

$$\mathbf{u}^{*}(t) = \underset{\mathbf{u}(t)\in U}{\operatorname{argmin}} \left\| \mathbf{w} \cdot \left[\mathbf{x}^{targ}(t + \Delta t) - \mathbf{x}^{pred}\left(t, \mathbf{x}(t), \mathbf{u}(t)\right) \right] \right\|^{2}$$

- **u** : control action
- x : state
- w: weights

How to integrate ML into real time control system?

- Neural Net developed in Python using Keras/Tensorflow
- Control system in C
- Need a way to make neural net predictions from C
- Existing approaches:
 - Call Python process:
 - Large latency, not safe for real time operations
 - Tensorflow C API:
 - Extremely difficult to code/implement
 - Relies on large external library
 - Tensorflow Lite:
 - Supports limited operations in C for embedded systems
 - Doesn't support many required operations (recurrent networks, temporal convolution etc)

Developed Keras2c to run NN in real time

Script/Library for converting Keras neural nets to C functions

Designed for simplicity and real time applications

Core functionality only ~1300 lines

Generates self-contained C function, no external dependencies

Supports full range of operations & architectures

Fully automated conversion & testing

Keras2c calculation speed comparable to Keras/Tensorflow

- Calculation time significantly faster than TensorFlow for small models
- Profile predictor model takes only ~600 µs per prediction
- Currently in use on DIII-D control system for profile prediction/control and disruption prediction (our group)
- Also, allows other groups to convert their NN to PCS code
- E.g. DIII-D FRNN (Bill Tang)

(Conlin, in preparation)

17

Profile Control: Preliminary Results

- Tested on 3 hour experiment on DIII-D, Nov 2019
- Alternating step target for core temperature
- Controller selected between 3 options for change in injected power
 - $\Delta P \in \{-150 \text{ kW}, +0 \text{ kW}, +150 \text{ kW}\}$ ○ $P_t = P_{t-1} + \Delta P$
- Bug in code caused model to lose "memory" whenever target changed
- Was still able to keep temperature close to target

Work by Y. Fu on NTM/disruption prediction/control

• Fu et al (2020) Physics of Plasmas

- featured article/Scilight,
- featured in DOE press release
- ML algorithm to predict tearing modes & disruptions
- Gives ~250ms warning time
- Used to control rampdown to avoid disruptions

Next Step: Use "instability" in cost function for control

- Predict instability (tearing mode)
- Instability (tearing) occurs
- Predict disruption with ML
- **Disruption occurs**

- Control to avoid disruption/NTM
- Simultaneously try to maximize plasma performance

Next Step: Higher Quality Profile Database with CAKE

- Currently ML model is trained on EFIT01 + Zipfit
 - Low quality fits, no pressure pedestal, no MSE constraint
- Consistent Automatic Kinetic Equilibria (CAKE) code produces kinetically constrained reconstructions with little to no human tuning
- Compares well with manually fit kinetic equilibrium

Improved Real time diagnostics for RT CAKE

Group's Contribution RT-Diagnostics:

- Real-time Thomson analysis added 2015.
- RT-Edge CER and analysis added 2018/9
- RT-ECE system (used for Alfven Mode Control)
- NN Fast ion calculation (FIAT)
- Real time measurements of T_e , n_e , T_i , Ω
- Allow better predictions from ML models in real time

Next Step: Real time CAKE

- Estimate pressure profile using Thomson scattering / CER
- Use estimated pressure profile + MSE as additional constraint in rtEFIT
- Pressure profile results:
 - Correct pedestal
 - General agreement, but stiffer than CAKE
- Current density profile results:
 - Correct bootstrap peak
 - General agreement with CAKE
- Improved state estimates = improved ML predictions

R. Shousha (in preparation)

Summary

- Profile predictor works well for offline analysis
- Predictive control tested on DIII-D
 - Demonstrated effective temperature control via NB power
 - Further tests to control more profiles
 - Integrate disruption/NTM avoidance using profile control
- Keras2C allows easy integration of ML models into PCS
 - Used for profile control, disruption prediction (FRNN group) on DIII-D
- CAKE / real time CAKE will provide reliable kinetically constrained equilibria & profiles for both ML training and real time control

Backup slides

Training set criteria

DIII-D shots from 2010 through the 2019 campaign are collected from the MDS+ database. Shots with a pulse length less than 2s, a normalized beta less than 1, or a non-standard topology are excluded from the start. A variety of non-standard data is also excluded, including the following situations:

- during and after a dudtrip trigger
- during and after ECH activation, since ECH is not currently included as an actuator
- whenever density feedback is off
- during and after non-normal operation of internal coils
- for shots where any needed signals are not in the database

Neural Net Info

- Activation: ReLU
- Input signals:
 - Profiles: Electron temperature, electron density, q, rotation, pressure
 - Scalars: line averaged density, inductance, minor radius, divertor separation, triangularity, plasma volume
 - Actuators: injected power, injected torque, plasma current, target density, toroidal magnetic field
- Outputs: Electron temperature, electron density, q, rotation, pressure

PCA explained variance

Explained Variance

Plasma Timescales

Transport Equations

 $\begin{array}{ll} \text{With sources of } n_e, \, L_{\mathrm{t}} \equiv \rho_m \langle R^2 \rangle \Omega_{\mathrm{t}} \text{ and } p_s, \text{ transport equations are} \\ & \quad \mathrm{density} \quad \left. \frac{1}{V'} \frac{\partial}{\partial t} \right|_{\psi_{\mathrm{p}}} n_e V' + \dot{\rho}_{\psi_{\mathrm{p}}} \frac{\partial n_e}{\partial \rho} + \frac{1}{V'} \frac{\partial}{\partial \rho} (V' \Gamma) = \langle \overline{S}_n \rangle, \\ & \quad \mathrm{tor. \ mom.} \quad \left. \frac{1}{V'} \frac{\partial}{\partial t} \right|_{\psi_{\mathrm{p}}} L_{\mathrm{t}} V' + \dot{\rho}_{\psi_{\mathrm{p}}} \frac{\partial L_{\mathrm{t}}}{\partial \rho} + \frac{1}{V'} \frac{\partial}{\partial \rho} (V' \overline{\Pi}_{\rho \zeta}) = \langle \vec{e}_{\zeta} \cdot \left(\overline{J \times \vec{B}} - \vec{\nabla} \cdot \overline{\vec{\Pi}} + \sum_s \overline{\vec{S}}_{\mathrm{ps}} \right) \rangle, \\ & \quad \mathrm{energy} \quad \left. \frac{3}{2} p_s \frac{\partial}{\partial t} \right|_{\psi_{\mathrm{p}}} p_s V'^{5/3} + \frac{3}{2} \dot{\rho}_{\psi_{\mathrm{p}}} \frac{\partial p_s}{\partial \rho} + \frac{1}{V'} \frac{\partial}{\partial \rho} (V' \Upsilon_s) + \langle \vec{\nabla} \cdot \vec{q}_{s*}^{\mathrm{pc}} \rangle = \overline{Q}_{\mathrm{snet}}. \end{array}$

J.D. Callen 2014 Lectures on Tokamak Plasma Transport Modeling

Gyrokinetic codes

- 5-dimensional
- First-principles
- ~months of CPU time
- Examples: <u>GYRO</u>, <u>XGC</u>
- Reduced physics models:
 - ~10s of seconds to a day
 - <u>TGLF</u>
 - o <u>QuaLiKiz</u>

Get transport coefficients

Picture: GYRO simulation from Greg Hammett's webpage

Predictive transport codes

- 1.5 dimensional
- Additional codes
 - Power deposition
 - Pedestal models
- Solves the transport equations
- Examples: TRANSP, ASTRA

Update profiles

¹Ongena et al 2012 *Numerical Transport Codes* ²<u>Meneghini et al 2018 Fusion Science and Tech 74</u> (origin of picture)