
Machine Learning Predictions of Plasma
Transport for Analysis and Control at

DIII-D
Joe Abbate, Rory Conlin, Yichen Fu, Ricardo Shousha, Anthony Xing

PI: Egemen Kolemen

Magnetic Fusion Science Meeting
March 9, 2020

Birds-Eye View: Machine Learning for Plasma Control

● We would like to achieve a stable, high
performance fusion reaction

● Need real-time control + offline
planning to obtain the states we want

● Using both machine learning and
reduced physics models

● Control actuators and actions are mostly in
the MHD to Transport timescales

2

This Talk

Goal:

● Predict plasma state evolution on
transport timescales, given present
state and actuator settings

Applications:

● Quick estimate of response to
actuators

● Real time model-predictive control

● Traditional transport modeling
● Machine learning approach
● Results
● Applications to real time control
● Integrating machine learning into

plasma control systems
● Future improvements

3

Transport Plasma State

𝜓

Full state of plasma determined
by 1D profiles:

4

● Pressure (P)
● Current (J)
● Electron temperature and

density (Te, ne)
● Ion temperature and

density (Ti, ni)
● Rotation (𝛺)

Given state (and actuators), can
we predict how plasma will
evolve?

Traditional transport modeling
● Use gyrokinetic code to calculate transport

coefficients
○ Full calculation (e.g. GYRO, XGC) takes ~months

of CPU time
○ Quasilinear approximation (e.g. TGLF, QuaLiKiz)

brings down to ~seconds-minutes

● Use transport equations to propagate
profiles

○ e.g. TRANSP, ASTRA facilitate this
○ Requires power deposition (GENRAY for ECH,

NUBEAM for NBI, etc)
○ Requires evolution of equilibrium (e.g. ISolver)

GYRO simulation from Greg Hammett’s webpage
Meneghini et al 2018 Fusion Science and Tech 74

5

https://w3.pppl.gov/~hammett/viz/viz.html
https://www.tandfonline.com/doi/full/10.1080/15361055.2017.1398585

Downsides of traditional transport modeling
● Some approximations to future data often needed for convergence

○ Requires pedestal model
○ Need to fix some profiles to predict others

● Too slow for realtime use
○ Neural net approximations for transport coefficients, power deposition, pedestal models, etc.

can possibly fix this (e.g. COTSIM, RAPTOR being developed)1,2,3

● Requires expertise and ad hoc setups
○ OMFIT is ameliorating this4

● Still discrepancies between experiments and simulations in some regimes5

1Meneghini et al 2017 Nucl. Fusion 57
2F. Felici et al 2018 Nucl. Fusion 58 (RAPTOR)
3E. Schuster et al 2019 Integrated Robust Control of Individual Scalar Variables in Tokamaks (COTSIM)
4Grierson et al 2018 Fusion Science and Technology, 74(1–2), 101–115
5S Smith et al 2015 Nucl Fusion 55

6

https://doi.org/10.1088/1741-4326/aa7776
https://iopscience.iop.org/article/10.1088/1741-4326/aac8f0
http://www6.lehigh.edu/~eus204/publications/conferences/cdc19a.pdf
https://doi.org/10.1080/15361055.2017.1398585
https://iopscience.iop.org/article/10.1088/0029-5515/55/8/083011/pdf

Fully Data-Driven Approach
Weaknesses

● Correlations only
● Only as strong as data
● Non-transferrable?

Strengths

● Fast
● Simple

○ No external models
○ No hand-tuning necessary

● Possibly more accurate in some
regimes

ML successful in event prediction:
● FRNN (Kates-Harbeck, 2019)
● DPP (Rea, 2019)
● MLDA (Fu, 2020)
● TCN (Churchill, 2019)

● ~10,000 DIII-D shots
from 2010-2018

● Train neural net on
~200k time samples

7

Learn f to predict state Δt=200ms into future
x(t) :
● Te
● ne
● q
● Ω
● P
● Shape

x(t+Δt):
● Te
● ne
● q
● Ω
● Pu(t) :

● Pinjected
● Tinjected
● Ip
● 〈ne〉target

x(t+Δt) = x(t) + f[x(t), u(t)]

8

Neural net to predict state 200ms into future

Model Architecture

(Abbate,Conlin, in preparation)

● Convolutional layers to capture
gradients of profiles for transport
(cf. natural response) (Szegedy, 2015)

● Recurrent layers to capture time
history of actuators (cf. forced
response) (Gers, 1999)

x(t) u(t)

Inception Blocks
(multi-resolution convolution)

Convolutions

x(t+Δt)

Merge

LSTM

f[x(t), u(t)]

9

(Abbate, Conlin, in preparation)
10

ML predictions qualitatively accurate

● Test on data from
2019 campaign

● Predicting 200 ms
ahead

● Predictions noisy, but
qualitatively correct

Preliminary results:
ML median error better
than baseline

● Baseline: predict no change in
profile

● Right: Median absolute error
over test set for baseline
(orange) and ML predictions
(blue)
○ Lower is better

● ML outperforms baseline
prediction for all profiles

11

ML prediction captures most dominant modes

12
(Abbate, Conlin, in preparation)

● Plasma is very complex,
physics models for control are
still lacking

● What can we learn from data?

● Physics based control generally
limited to controlling scalar
variables

Towards Profile Control

13(Boyer, 2013)

● Recent advances in profile
control very limited

14

Model Predictive Profile Control

(Conlin, Abbate, unpublished)

● Real time predictions allows predictive
control

● Simulate different actions in real time

● Take the action to minimize cost function:

u : control action
x : state
w : weights

How to integrate ML into real time control system?
● Neural Net developed in Python using Keras/Tensorflow
● Control system in C
● Need a way to make neural net predictions from C
● Existing approaches:

○ Call Python process:
■ 🆇 Large latency, not safe for real time operations

○ Tensorflow C API:
■ 🆇 Extremely difficult to code/implement
■ 🆇 Relies on large external library

○ Tensorflow Lite:
■ ✅ Supports limited operations in C for embedded systems
■ 🆇 Doesn’t support many required operations (recurrent networks, temporal

convolution etc)
15

Script/Library for converting Keras
neural nets to C functions

Developed Keras2c to run NN in real time

✅ Designed for simplicity and real time
applications

✅ Core functionality only ~1300 lines

✅ Generates self-contained C function,
no external dependencies

✅ Supports full range of operations &
architectures

✅ Fully automated conversion & testing
16(Conlin, in preparation)

● Calculation time significantly
faster than TensorFlow for small
models

● Profile predictor model takes
only ~600 μs per prediction

● Currently in use on DIII-D control
system for profile
prediction/control and disruption
prediction (our group)

● Also, allows other groups to
convert their NN to PCS code

● E.g. DIII-D FRNN (Bill Tang)

Keras2c calculation speed comparable to Keras/Tensorflow

17(Conlin, in preparation)

(Conlin, Abbate, unpublished)

Profile Control: Preliminary Results

● Tested on 3 hour experiment on DIII-D,
Nov 2019

18

● Alternating step target for core
temperature

● Controller selected between 3 options
for change in injected power

○ 𝛥P ∈ {-150 kW, +0 kW, +150 kW}
○ Pt = Pt-1 + 𝛥P

● Bug in code caused model to lose
“memory” whenever target changed

● Was still able to keep temperature
close to target

Work by Y. Fu on NTM/disruption prediction/control

● Fu et al (2020) Physics of Plasmas
○ featured article/Scilight,
○ featured in DOE press release

● ML algorithm to predict tearing modes &
disruptions

● Gives ~250ms warning time
● Used to control rampdown to avoid

disruptions

19

https://doi.org/10.1063/1.5125581

Next Step: Use “instability” in cost function for control

● Control to avoid disruption/NTM
● Simultaneously try to maximize plasma

performance
20

Next Step: Higher Quality Profile Database with CAKE
● Currently ML model is trained on

EFIT01 + Zipfit
○ Low quality fits, no pressure

pedestal, no MSE constraint

● Consistent Automatic Kinetic
Equilibria (CAKE) code
produces kinetically constrained
reconstructions with little to no
human tuning

● Compares well with manually fit
kinetic equilibrium

Xing et al (2020) submitted to PPCF
21

Improved Real time diagnostics for RT CAKE
Group’s Contribution RT-Diagnostics:

● Real-time Thomson analysis added
2015.

● RT-Edge CER and analysis added
2018/9

● RT-ECE system (used for Alfven
Mode Control)

● NN Fast ion calculation (FIAT)
● Real time measurements of Te, ne, Ti,

Ω
● Allow better predictions from ML

models in real time

22

Next Step: Real time CAKE
● Estimate pressure profile using

Thomson scattering / CER
● Use estimated pressure profile +

MSE as additional constraint in
rtEFIT

● Pressure profile results:
○ Correct pedestal
○ General agreement, but stiffer than

CAKE

● Current density profile results:
○ Correct bootstrap peak
○ General agreement with CAKE

● Improved state estimates =
improved ML predictions Magnetics rtEFIT

 Magnetics + MSE + pressure rtEFIT
 CAKER. Shousha (in preparation)

23

Summary
● Profile predictor works well for offline analysis
● Predictive control tested on DIII-D

○ Demonstrated effective temperature control via NB power
○ Further tests to control more profiles
○ Integrate disruption/NTM avoidance using profile control

● Keras2C allows easy integration of ML models into PCS
○ Used for profile control, disruption prediction (FRNN group) on DIII-D

● CAKE / real time CAKE will provide reliable kinetically constrained equilibria
& profiles for both ML training and real time control

24

Backup slides
25

Training set criteria
DIII-D shots from 2010 through the 2019 campaign are collected from the MDS+
database. Shots with a pulse length less than 2s, a normalized beta less than 1, or
a non-standard topology are excluded from the start. A variety of non-standard
data is also excluded, including the following situations:

● during and after a dudtrip trigger
● during and after ECH activation, since ECH is not currently included as an

actuator
● whenever density feedback is off
● during and after non-normal operation of internal coils
● for shots where any needed signals are not in the database

26

Neural Net Info
● Lookback: 6x 50ms windows
● Lookahead: 200 ms
● Normalization: subtract median, divide by IQR
● Data source: Zipfit, EFIT
● Loss function: weighted MSE
● Optimizer: Adagrad
● Batch size: 128
● Epochs: 200
● Trainable parameters: 166,887
● Inception block size: 2x16, 4x16, 8x16
● Activation: ReLU
● Input signals:

○ Profiles: Electron temperature, electron density, q, rotation, pressure
○ Scalars: line averaged density, inductance, minor radius, divertor separation, triangularity, plasma volume
○ Actuators: injected power, injected torque, plasma current, target density, toroidal magnetic field

● Outputs: Electron temperature, electron density, q, rotation, pressure

27

PCA explained variance

28

29

Plasma Timescales

30

31

Transport Equations

J.D. Callen 2014 Lectures on Tokamak Plasma Transport Modeling
32

http://homepages.cae.wisc.edu/~callen/Callen_Lect4_CEMRACS_2014f.pdf

Gyrokinetic codes
● 5-dimensional
● First-principles
● ~months of CPU time
● Examples: GYRO, XGC
● Reduced physics models:

○ ~10s of seconds to a day
○ TGLF
○ QuaLiKiz

Picture: GYRO simulation from Greg Hammett’s webpage

Get transport coefficients

33

https://fusion.gat.com/theory/Gyrooverview
https://theory.pppl.gov/research/research.php?rid=10
https://gafusion.github.io/doc/tglf.html
https://github.com/QuaLiKiz-group/QuaLiKiz/wiki/QuaLiKiz-documentation
https://w3.pppl.gov/~hammett/viz/viz.html

Predictive transport codes
● 1.5 dimensional
● Additional codes

○ Power deposition
○ Pedestal models

● Solves the transport equations
● Examples: TRANSP, ASTRA

1Ongena et al 2012 Numerical Transport Codes
2Meneghini et al 2018 Fusion Science and Tech 74 (origin of picture)

Update profiles

34

https://w3.pppl.gov/~pshare/help/transp.htm
https://w3.pppl.gov/~hammett/work/2009/Astra_ocr.pdf
https://www.tandfonline.com/doi/abs/10.13182/FST12-A13505
https://www.tandfonline.com/doi/full/10.1080/15361055.2017.1398585

