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Birds-Eye View: Machine Learning for Plasma Control

● We would like to achieve a stable, high 
performance fusion reaction

● Need real-time control + offline 
planning to obtain the states we want

● Using both machine learning and 
reduced physics models

● Control actuators and actions are mostly in 
the MHD to Transport timescales
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This Talk

Goal:

● Predict plasma state evolution on 
transport timescales, given present 
state and actuator settings

Applications:

● Quick estimate of response to 
actuators

● Real time model-predictive control

● Traditional transport modeling
● Machine learning approach
● Results
● Applications to real time control
● Integrating machine learning into 

plasma control systems
● Future improvements
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Transport Plasma State

𝜓

Full state of plasma determined 
by 1D profiles:
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● Pressure (P)
● Current (J) 
● Electron temperature and 

density (Te, ne)
● Ion temperature and 

density (Ti, ni) 
● Rotation (𝛺)

Given state (and actuators), can 
we predict how plasma will 
evolve?



Traditional transport modeling
● Use gyrokinetic code to calculate transport 

coefficients
○ Full calculation (e.g. GYRO, XGC) takes ~months 

of CPU time
○ Quasilinear approximation (e.g. TGLF, QuaLiKiz) 

brings down to ~seconds-minutes

● Use transport equations to propagate 
profiles

○ e.g. TRANSP, ASTRA facilitate this
○ Requires power deposition (GENRAY for ECH, 

NUBEAM for NBI, etc) 
○ Requires evolution of equilibrium (e.g. ISolver)

GYRO simulation from Greg Hammett’s webpage
Meneghini et al 2018 Fusion Science and Tech 74
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https://w3.pppl.gov/~hammett/viz/viz.html
https://www.tandfonline.com/doi/full/10.1080/15361055.2017.1398585


Downsides of traditional transport modeling
● Some approximations to future data often needed for convergence

○ Requires pedestal model 
○ Need to fix some profiles to predict others 

● Too slow for realtime use
○ Neural net approximations for transport coefficients, power deposition, pedestal models, etc. 

can possibly fix this (e.g. COTSIM, RAPTOR being developed)1,2,3

● Requires expertise and ad hoc setups
○ OMFIT is ameliorating this4

● Still discrepancies between experiments and simulations in some regimes5

1Meneghini et al 2017 Nucl. Fusion 57 
2F. Felici et al 2018 Nucl. Fusion 58 (RAPTOR)
3E. Schuster et al 2019 Integrated Robust Control of Individual Scalar Variables in Tokamaks (COTSIM)
4Grierson et al 2018 Fusion Science and Technology, 74(1–2), 101–115
5S Smith et al 2015 Nucl Fusion 55
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https://doi.org/10.1088/1741-4326/aa7776
https://iopscience.iop.org/article/10.1088/1741-4326/aac8f0
http://www6.lehigh.edu/~eus204/publications/conferences/cdc19a.pdf
https://doi.org/10.1080/15361055.2017.1398585
https://iopscience.iop.org/article/10.1088/0029-5515/55/8/083011/pdf


Fully Data-Driven Approach
Weaknesses

● Correlations only
● Only as strong as data
● Non-transferrable?

Strengths

● Fast 
● Simple

○ No external models
○ No hand-tuning necessary

● Possibly more accurate in some 
regimes

ML successful in event prediction:
● FRNN (Kates-Harbeck, 2019)
● DPP (Rea, 2019)
● MLDA (Fu, 2020)
● TCN (Churchill, 2019)

● ~10,000 DIII-D shots 
from 2010-2018

● Train neural net on 
~200k time samples
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Learn f to predict state Δt=200ms into future
x(t) :
● Te
● ne
● q
● Ω
● P
● Shape

x(t+Δt):
● Te
● ne
● q
● Ω
● Pu(t) : 

● Pinjected
● Tinjected
● Ip
● 〈ne〉target

x(t+Δt) = x(t) + f[x(t), u(t)]
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Neural net to predict state 200ms into future

Model Architecture

(Abbate,Conlin, in preparation)

● Convolutional layers to capture 
gradients of profiles for transport 
(cf. natural response) (Szegedy, 2015)

● Recurrent layers to capture time 
history of actuators (cf. forced 
response) (Gers, 1999)

x(t) u(t) 

Inception Blocks 
(multi-resolution convolution)

Convolutions

x(t+Δt)

Merge

LSTM

f[x(t), u(t)]
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(Abbate, Conlin, in preparation)
10

ML predictions qualitatively accurate

● Test on data from 
2019 campaign

● Predicting 200 ms 
ahead

● Predictions noisy, but 
qualitatively correct



Preliminary results: 
ML median error better 
than baseline

● Baseline: predict no change in 
profile

● Right: Median absolute error 
over test set for baseline 
(orange) and ML predictions 
(blue)
○ Lower is better

● ML outperforms baseline 
prediction for all profiles
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ML prediction captures most dominant modes
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(Abbate, Conlin, in preparation)



● Plasma is very complex, 
physics models for control are 
still lacking

● What can we learn from data?

● Physics based control generally 
limited to controlling scalar 
variables

Towards Profile Control

13(Boyer, 2013)

● Recent advances in profile 
control very limited
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Model Predictive Profile Control

(Conlin, Abbate, unpublished)

● Real time predictions allows predictive 
control

● Simulate different actions in real time

● Take the action to minimize cost function:

u : control action
x : state
w : weights



How to integrate ML into real time control system?
● Neural Net developed in Python using Keras/Tensorflow
● Control system in C
● Need a way to make neural net predictions from C
● Existing approaches:

○ Call Python process:
■ 🆇 Large latency, not safe for real time operations

○ Tensorflow C API: 
■ 🆇 Extremely difficult to code/implement
■ 🆇 Relies on large external library

○ Tensorflow Lite:
■ ✅ Supports limited operations in C for embedded systems
■ 🆇 Doesn’t support many required operations (recurrent networks, temporal 

convolution etc)
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Script/Library for converting Keras 
neural nets to C functions

Developed Keras2c to run NN in real time

✅ Designed for simplicity and real time 
applications

✅ Core functionality only ~1300 lines

✅ Generates self-contained C function, 
no external dependencies

✅ Supports full range of operations & 
architectures

✅ Fully automated conversion & testing
16(Conlin, in preparation)



● Calculation time significantly 
faster than TensorFlow for small 
models

● Profile predictor model takes 
only ~600 μs per prediction

● Currently in use on DIII-D control 
system for profile 
prediction/control and disruption 
prediction (our group)

● Also, allows other groups to 
convert their NN to PCS code

● E.g. DIII-D FRNN (Bill Tang)

Keras2c calculation speed comparable to Keras/Tensorflow

17(Conlin, in preparation)



(Conlin, Abbate, unpublished)

Profile Control: Preliminary Results

● Tested on 3 hour experiment on DIII-D, 
Nov 2019
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● Alternating step target for core 
temperature

● Controller selected between 3 options 
for change in injected power 

○ 𝛥P ∈ {-150 kW, +0 kW, +150 kW}
○ Pt = Pt-1 + 𝛥P

● Bug in code caused model to lose 
“memory” whenever target changed

● Was still able to keep temperature 
close to target



Work by Y. Fu on NTM/disruption prediction/control

● Fu et al (2020) Physics of Plasmas
○ featured article/Scilight, 
○ featured in DOE press release

● ML algorithm to predict tearing modes & 
disruptions

● Gives ~250ms warning time
● Used to control rampdown to avoid 

disruptions
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https://doi.org/10.1063/1.5125581


Next Step: Use “instability” in cost function for control

● Control to avoid disruption/NTM
● Simultaneously try to maximize plasma 

performance
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Next Step: Higher Quality Profile Database with CAKE
● Currently ML model is trained on 

EFIT01 + Zipfit
○ Low quality fits, no pressure 

pedestal, no MSE constraint

● Consistent Automatic Kinetic 
Equilibria (CAKE) code  
produces kinetically constrained 
reconstructions with little to no 
human tuning

● Compares well with manually fit 
kinetic equilibrium

Xing et al (2020) submitted to PPCF
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Improved Real time diagnostics for RT CAKE
Group’s Contribution RT-Diagnostics: 

● Real-time Thomson analysis added 
2015. 

● RT-Edge CER and analysis added 
2018/9

● RT-ECE system (used for Alfven 
Mode Control)

● NN Fast ion calculation (FIAT)
● Real time measurements of Te, ne, Ti, 

Ω
● Allow better predictions from ML 

models in real time
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Next Step: Real time CAKE
● Estimate pressure profile using 

Thomson scattering / CER
● Use estimated pressure profile + 

MSE as additional constraint in 
rtEFIT

● Pressure profile results:
○ Correct pedestal
○ General agreement, but stiffer than 

CAKE

● Current density profile results:
○ Correct bootstrap peak
○ General agreement with CAKE

● Improved state estimates = 
improved ML predictions  Magnetics rtEFIT  

 Magnetics + MSE + pressure rtEFIT 
 CAKER. Shousha (in preparation)
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Summary
● Profile predictor works well for offline analysis
● Predictive control tested on DIII-D

○ Demonstrated effective temperature control via NB power
○ Further tests to control more profiles
○ Integrate disruption/NTM avoidance using profile control

● Keras2C allows easy integration of ML models into PCS
○ Used for profile control, disruption prediction (FRNN group) on DIII-D

● CAKE / real time CAKE will provide reliable kinetically constrained equilibria 
& profiles for both ML training and real time control
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Backup slides
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Training set criteria 
DIII-D shots from 2010 through the 2019 campaign are collected from the MDS+ 
database. Shots with a pulse length less than 2s, a normalized beta less than 1, or 
a non-standard topology are excluded from the start. A variety of non-standard 
data is also excluded, including the following situations:

● during and after a dudtrip trigger
● during and after ECH activation, since ECH is not currently included as an 

actuator
● whenever density feedback is off
● during and after non-normal operation of internal coils 
● for shots where any needed signals are not in the database
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Neural Net Info
● Lookback: 6x 50ms windows
● Lookahead: 200 ms
● Normalization: subtract median, divide by IQR
● Data source: Zipfit, EFIT
● Loss function: weighted MSE
● Optimizer: Adagrad
● Batch size: 128
● Epochs: 200
● Trainable parameters: 166,887
● Inception block size: 2x16, 4x16, 8x16
● Activation: ReLU
● Input signals: 

○ Profiles: Electron temperature, electron density, q, rotation, pressure
○ Scalars: line averaged density, inductance, minor radius, divertor separation, triangularity, plasma volume
○ Actuators: injected power, injected torque, plasma current, target density, toroidal magnetic field

● Outputs: Electron temperature, electron density, q, rotation, pressure
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PCA explained variance
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Plasma Timescales
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Transport Equations

J.D. Callen 2014 Lectures on Tokamak Plasma Transport Modeling
32

http://homepages.cae.wisc.edu/~callen/Callen_Lect4_CEMRACS_2014f.pdf


Gyrokinetic codes
● 5-dimensional 
● First-principles
● ~months of CPU time
● Examples: GYRO, XGC
● Reduced physics models:

○ ~10s of seconds to a day
○ TGLF 
○ QuaLiKiz

Picture: GYRO simulation from Greg Hammett’s webpage

Get transport coefficients
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https://fusion.gat.com/theory/Gyrooverview
https://theory.pppl.gov/research/research.php?rid=10
https://gafusion.github.io/doc/tglf.html
https://github.com/QuaLiKiz-group/QuaLiKiz/wiki/QuaLiKiz-documentation
https://w3.pppl.gov/~hammett/viz/viz.html


Predictive transport codes
● 1.5 dimensional
● Additional codes

○ Power deposition
○ Pedestal models

● Solves the transport equations
● Examples: TRANSP, ASTRA

1Ongena et al 2012 Numerical Transport Codes
2Meneghini et al 2018 Fusion Science and Tech 74 (origin of picture)

Update profiles
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https://w3.pppl.gov/~pshare/help/transp.htm
https://w3.pppl.gov/~hammett/work/2009/Astra_ocr.pdf
https://www.tandfonline.com/doi/abs/10.13182/FST12-A13505
https://www.tandfonline.com/doi/full/10.1080/15361055.2017.1398585

