

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

New Insights into the Enhanced Pedestal H-mode Regime on NSTX

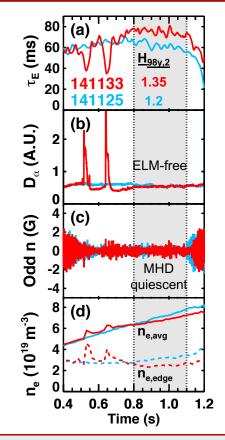
D.J. Battaglia,

W. Guttenfelder, R.E. Bell, A. Diallo,

N. Ferarro, E. Friedrickson, S.P. Gerhardt,

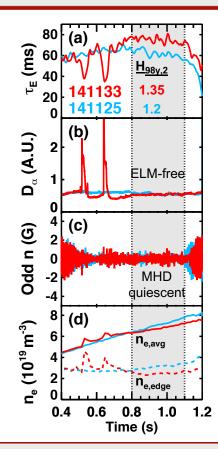
S.M. Kaye, R. Maingi and D.R. Smith

NSTX-U Monday Science Meeting April 6, 2020


Largest confinement time on NSTX achieved in the Enhanced Pedestal (EP) H-mode regime

- NSTX-U mission: develop solutions for a tokamak compact fusion pilot plant (CFPP)
 - Compact designs: $H_{98y,2} > 1.5$ with small or no ELMs
 - AT approach: steady-state, high β_N at large f_{GW} and f_{BS}
- EP H-mode on NSTX is attractive for a CFPP
 - Enhanced confinement ($H_{98y,2}$ as large as 1.8)
 - ELM-free with slower density accumulation
 - $-\beta_N \sim 6$ 7, f_{GW} > 0.7, f_{BS} > 0.6, q_{min} ~ 2, q₉₅ ~ 9
 - Defining feature is large edge ∇T_i

R. Maingi et al., J. Nucl. Mat. 390-1, 440-3 (2009)

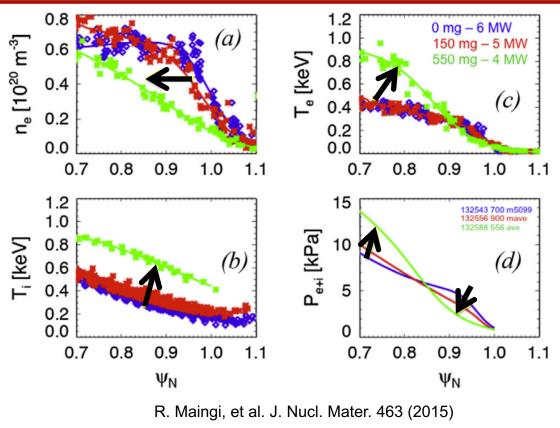

R. Maingi et al., PRL 105, 135004 (2010)

S. Gerhardt et al., NF 54, 083021 (2014)

This talk aims to show

- EP H-mode transition: positive feedback between neoclassical ion energy transport and anomalous particle transport
 - Evolves to new state with improved energy confinement, reduced particle confinement
- Large ELM can trigger positive feedback
 - Due to temporary reduction in edge neutral density
- Anomalous particle transport changes in character in EP H-mode
 - Transport becomes more MHD-like (KBM, kink-peeling)

Outline

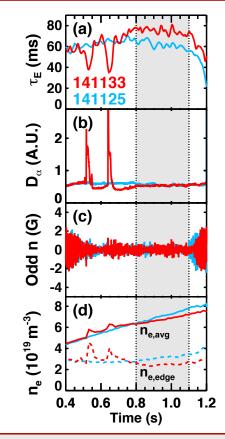

- Comparison of wide-pedestal and EP H-mode
- Neoclassical ion thermal transport at low ν_i^{\star}
- Bifurcation to EP H-mode following an ELM
- Anomalous transport in ELM-free pedestal
- Potential for EP H-mode on NSTX-U

NSTX achieved wide pedestal H-mode via reduction in recycling with lithium wall coatings

- Lower recycling reduces n_{e,sep} and ∇n_e
 - Improved confinement in ELM-free regime
 - Stabilize MTM $\psi_{\rm N}$ < 0.9
 - Enhanced $\chi_e \psi_N > 0.9$

J. M. Canik, et al. Nucl. Fusion 53 (2013) R. Maingi, et al. Phys. Rev. Lett. 103 (2009) M. Coury et al. Phys. Plasmas 23 (2016)

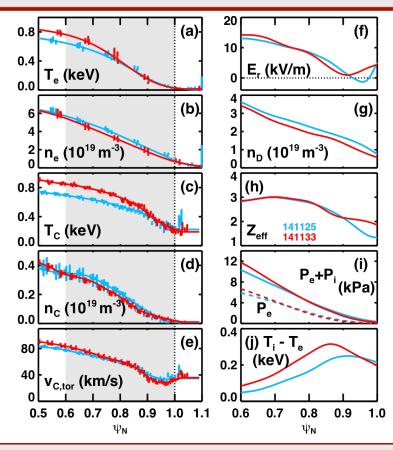
	P_{NBI}	Lithium
		0 mg
ELM-free H-mode		
Wide ped. H-mode	4 MW	550 mg



Matched discharges provide good comparison for wide-pedestal and EP H-mode

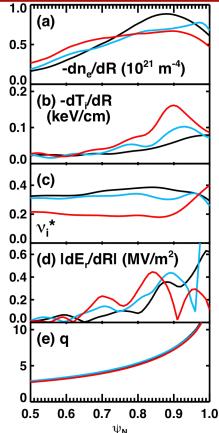
- WP \rightarrow EP H-mode via further reduction in edge n_e
- Compare MHD-quiescent periods at matched $n_{e,avg}$ - $B_T = 0.45T$, $I_p = 0.9MA$, 3 MW NBI, $q_0 < 2$, $q_{95} \sim 9$, near DN

WP H-mode 141125 EFC + 400A n=3 EP H-mode 141133 EFC + 500A n=3


- Long ELM-free periods with lithium wall conditioning
 - Non-resonant 3D field alters edge, induces ELMs
 - 600A current in 3D coils induces regular ELMs
 - EP H-mode discharge has 2 ELMs, then ELM-free
- $H_{98y,2}$ = 1.2 in WP, $H_{98y,2}$ = 1.35 in EP - Modest EP H-mode with β_N = 5.5

EP H-mode has lower edge n_e , larger core T_i and T_e

- Edge n_e , n_D is reduced - Z_{eff} larger for $\psi_N > 0.9$
- Location of minimum E_r shifts inward
- Pressure similar for $\psi_{\rm N}$ > 0.8
- Characteristic increase in edge ∇T_i
 - Larger core T_{i} and T_{e}
 - Bigger increase in core T_i

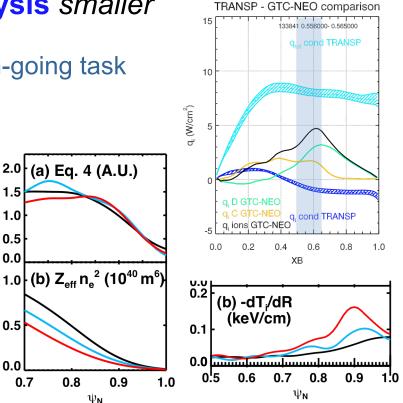

WP H-mode 141125 EFC + 400A n=3 EP H-mode 141133 EFC + 500A n=3

EP H-mode realized with more peaked density profile and lower v_i^*

- EP H-mode: smallest $-\nabla n_e$ for $\psi_N > 0.9$, largest for $\psi_N < 0.7^{1.0}$ (a) – Density profile is more peaked
- EP H-mode profiles have largest edge $-\nabla T_i$
- $\nu_i^* < 0.3$ near $\psi_N = 0.9$ due to lower density – Farther in, smaller ν_i^* due to larger T_i
- E_r shear peaks inside location of maximum -∇T_i
 Max -∇T_i typically close to E_r minimum in EP H-mode profiles
- Enhanced thermal confinement without reverse q-shear
 - WP H-mode 141131 EFC only WP H-mode 141125 EFC + 400A n=3 EP H-mode 141133 EFC + 500A n=3

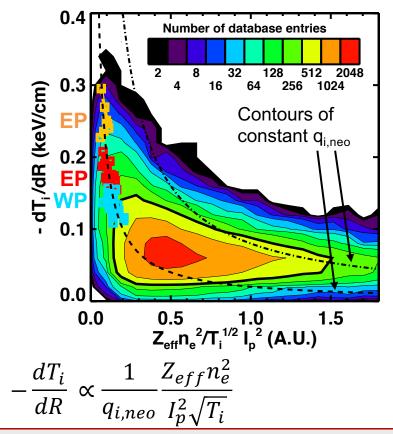
Outline

- Comparison of WP and EP H-mode
- Neoclassical ion thermal transport at low $\nu_i^{\,*}$
- Bifurcation to EP H-mode following an ELM
- Anomalous transport in ELM-free pedestal
- Potential for EP H-mode on NSTX-U



Improved ∇T_i consistent with neoclassical scaling

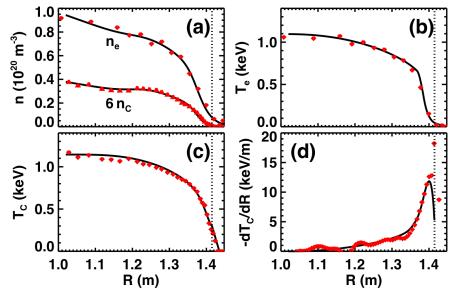
- Experimental q_i from interpretive analysis smaller than neoclassical q_i
 - Resolving quantitative discrepancy is an on-going task
- This work focuses on demonstrating ∇T_i agrees with *scaling* of neoclassical banana transport


$$q_{i,neo} \propto -\frac{dT_i}{dR} \frac{Z_{eff} n_e^2}{I_p^2 \sqrt{T_i}}$$
 (eq. 4)

- EP H-mode has smaller edge $Z_{eff}n_e^2$
 - Leading terms of $q_{i,neo}$ similar despite differences in ∇T_i

Database illustrates largest $-\nabla T_i$ achieved when neoclassical transport expected to be small

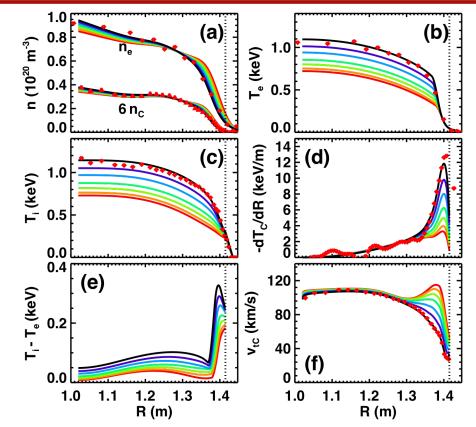
- Database of all NSTX CHERS profiles with P_{NBI} > 2 MW, Z_{eff} < 3
 - Identify max - ∇T_i for each profile
 - Form database of local parameters
 - Colors represent number of entries
 - 83% of entries reside inside thick black contour (yellow, orange, red)
- Largest -∇T_i achieved at small values along x-axis
 - Rapid increase in - ∇T_i at constant $q_{i,neo}$
 - Colored points are shots of interest


Simple model developed to illustrate impact of edge density on core temperatures

- Use fixed equilibrium (B_T , I_p , q, κ ...)
- Define n_e, n_c that match EP H-mode ____
- Solve time-independent energy transport

$$q_{i,neo} = Q_i - n_D \nu_{\varepsilon}^{e/i} (T_i - T_e)$$

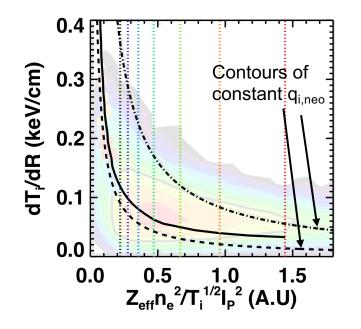
$$-n_e \chi_e \nabla T_e = Q_e + n_D \nu_{\varepsilon}^{e/i} (T_i - T_e)$$


- Q_i , Q_e approximated using TRANSP
- q_{i,neo} proportional to analytic neoclassical
- Core $\chi_{\rm e}$ = 2.9 m²/s

- Iterate to find T_i and T_e profiles with separatrix conditions:
 - $T_{i,sep}$ proportional to $q_{i,neo}$ at separatrix
 - T_{e,sep} = 60 eV with fixed a/L_{Te} until T_e/T_i = 0.9

Core temperature decreases as density profiles become broader

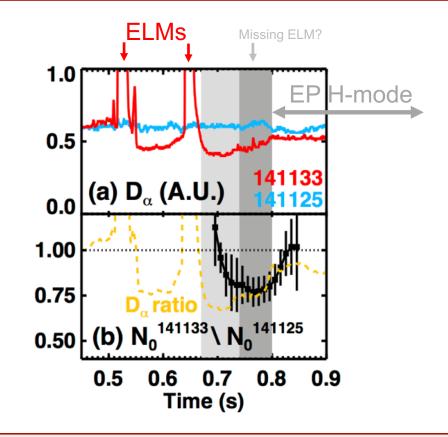
- Broaden n_e profile (Black \rightarrow red)
 - Maintain same line-averaged $\rm n_e$
 - Keep Z_{eff} profile constant
 - All other free parameters are the same
 - Repeat calculation of self-consistent temperature for each choice n_e profile
- Edge - ∇T_i and core T decrease as edge n_e increases
 - Region of stiff $T_{\rm e}$ becomes narrower
 - T_i T_e becomes smaller
 - With fixed E_r (and $v_{pol} = 0$) edge toroidal carbon rotation becomes more positive



Simple model demonstrates relationship between edge density and core temperature

- Reproduces rapid increase in edge ∇T_i as $n_{e,sep}$ decreases
 - Due to $\nabla T_i \propto 1/n_e^2$ at constant $q_{i,neo}$
- Increasing difference in core T_i and T_e at lower $n_{e,\text{sep}}$
 - Reduces edge $q_{i,neo}$ as more ion energy is transferred to electrons via collisions

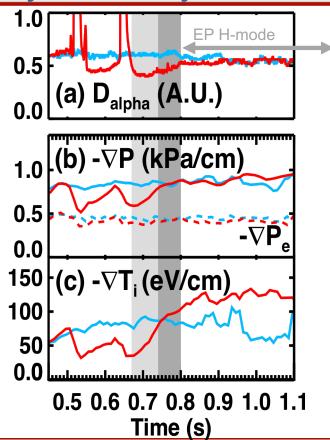
$$q_{i,neo} = Q_i - n_D \nu_{\varepsilon}^{e/i} (T_i - T_e)$$


Outline

- Comparison of WP and EP H-mode
- Neoclassical ion thermal transport at low v_i^*
- Bifurcation to EP H-mode following an ELM
- Anomalous transport in ELM-free pedestal
- Potential for EP H-mode on NSTX-U

A period of reduced neutral fueling occurs during the ELM recovery

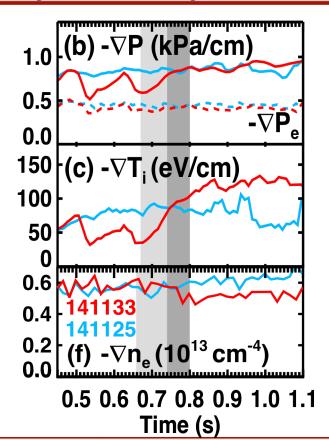
- Divertor heat flux from ELM liberates neutrals from the wall
 - Neutral recycling reduced while wall inventory recovers
- Ratio of neutral density at $T_e = 100eV$ between two shots (black) similar to ratio of divertor D_{α} (gold)
 - Lower neutral density facilitates entry into EP H-mode
 - Measurement from passive CHERs

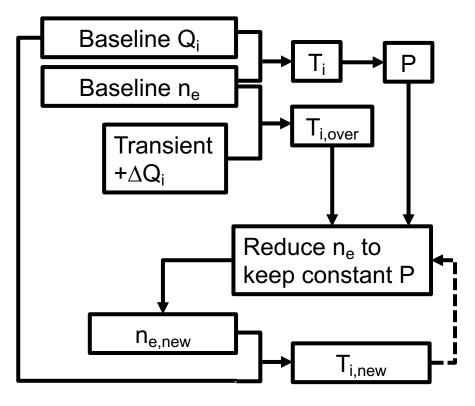


Proposed trigger mechanism: Pressure gradient saturates prior to neutral density recovery

 KBM and/or saturated kinkpeeling instability clamp ∇P

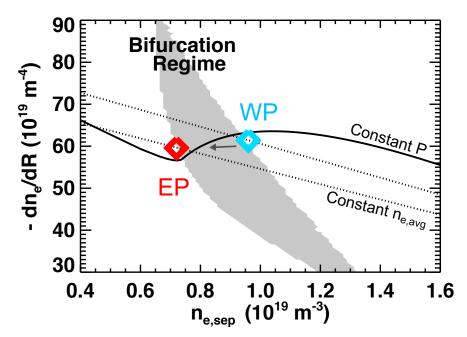
- Dark gray phase


 Lower neutral density leads to a "T_i overshoot" in this phase
 – Reduced charge-exchange losses


Proposed trigger mechanism: pressure gradient saturates prior to neutral density recovery

- MHD-like instability reduces edge density gradient to maintain ∇P during T_i overshoot
 - MHD-modes have a larger impact on the total particle transport than the total energy transport in the pedestal
 - $D/\chi \sim 1$ for MHD-like transport
 - D/χ << 1 for ETG, MTM
 - $D/\chi < 0.1$ in pedestal
- Increased ∇T_i gets "locked in" by reduction in edge density
 - Maintain neoclassical heat flux at lower edge density
 - Persists after full recovery of neutral density

Simple model demonstrates positive feedback between neo. energy transport and MHD-like particle transport



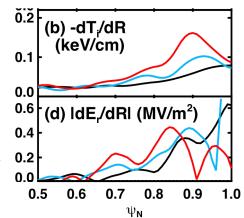
- Use simple model for 0.85 < ψ_{N} < 1 $q_{i,neo} = Q_i - n_D v_{\varepsilon}^{e/i} (T_i - T_e)$
 - Fixed T_e profile (constant a/L_{Te})
 - Simplify n_e profile
 - Two parameters: $n_{e,sep}$, ∇n_e
 - $Z_{eff} = 2$ with C^{6+} only impurity
- Increase Q_i slightly
 - Recalculate T_i profile (T_{i,over})
 - Reduce n_e to maintain constant P $(n_{e,new})$
- Calculate T_i with lower n_e profile and original Q_i (T_{i,new})
 Is T_{i,new} > T_{i,over} ?

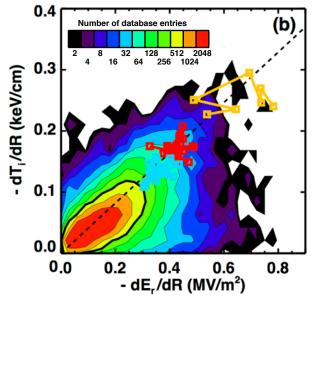
Simple model demonstrates positive feedback between neo. energy transport and anomalous particle transport

- Lower n_{e,sep} facilitates bifurcation with a constant n_{e,avg} (dotted lines)
 – i.e. more peaked density profiles
- Left-side boundary of gray region (stable EP solutions) requires damping mechanism
 - Imposed in model by defining a max ∇T_i
 - Possible damping mechanisms include:
 - Growing T_i/T_e in core, reducing $q_{i,neo}$
 - Increasing $\chi_{i,anom} / \chi_{i,neo}$
 - Evolving equilibrium, Z_{eff}
- Simple model illustrates WP \rightarrow EP bifurcation with n_{e,sep} < 10¹⁹ m⁻³
 - New state at constant P (solid line)

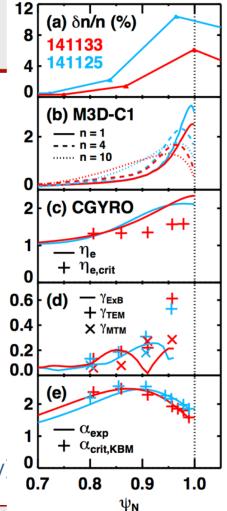
Gray region indicates n_e profiles where positive feedback is initiated ($T_{i,new} > T_{i,over}$)

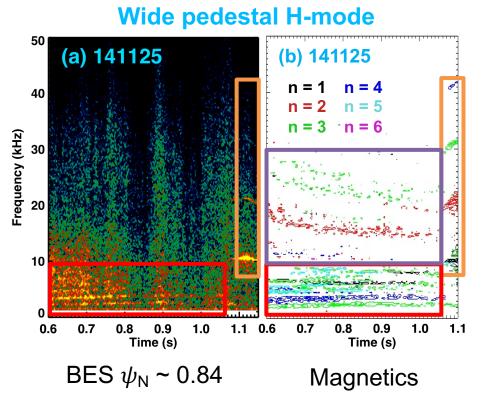
Outline


- Comparison of WP and EP H-mode
- Neoclassical ion thermal transport at low v_i^*
- Bifurcation to EP H-mode following an ELM
- Anomalous transport in ELM-free pedestal


• Potential for EP H-mode on NSTX-U

Maximum $-\nabla E_r$ and maximum $-\nabla T_i$ increase concurrently


- Location of max -∇E_r at smaller R compared to -∇T_i
 - Max - ∇ T_i typically aligns with minimum in E_r (∇ E_r = 0) in EP H-mode
- Magnitudes grow concurrently
 - Location of max -∇E_r shifts inward with EP H-mode
- May impact anomalous transport
 - For example, improved electron energy confinement



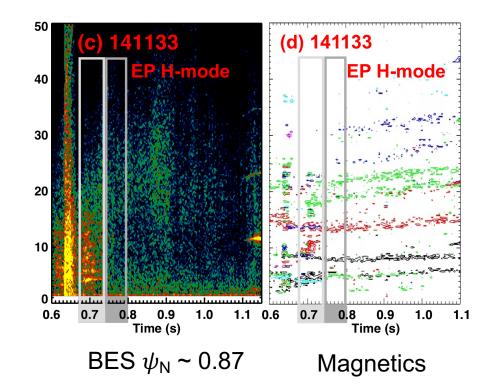
WP and EP phases have similar linear stability properties

- BES shows dn/n perturbations increasing toward separatrix
 - Large flux compression limits channel radial resolution ($\Delta \psi_{\rm N} \sim \pm 0.1$)
 - Normalized density perturbations (dn/n) larger in WP than EP
- M3D-C1 predicts unstable kink-peeling modes
 - n =1 20 predicted to be linearly unstable in both discharges
 - Initial two-fluid calculations: $co-I_p$ in lab frame with n x 11 kHz
- CGYRO linear results similar to previous WP analysis
 - $-\,$ ITG robustly stable across profile, ETG unstable in region of stiff $\nabla T_{\rm e}$
 - TEM unstable for $\psi_{\rm N}$ > 0.9, MTM subdominant in this region
 - $-\,$ TEM, MTM near marginal stability for $\psi_{\rm N}$ < 0.9 $\,$
- Experimental profiles near critical onset for KBM (α_{crit})
 - Scale β and identifying rapid increase in γ and switch to ion-directed
 - No onset if local equilibrium scaled self-consistently (i.e. second-stability)

BES: Ion-scale fluctuations are predominately below 10 kHz in wide-pedestal H-mode

- Core modes as $q_0 \rightarrow 1$
 - Coupled 1/1, 2/1

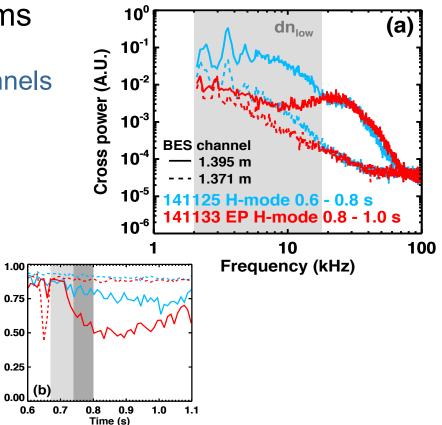
- Low frequency, coherent edge modes in ELM-free or small-ELM regimes
 - Peak in amplitude at separatrix but exist throughout pedestal
 - Sometimes observed with harmonics, $\Delta f \sim 2 \text{ kHz}$
 - Shown to broaden heat flux


Sontag et al. *NF* **51**, 103022 (2011) Park et al. *NF* **54**, 043013 (2014) Gan et al. *NF* **57**, 126053 (2017) Zweben et al. PoP, submitted (2020)

• Faint detection of EHO in mag. $- \Delta f = 7 - 10 \text{ kHz co-I}_{p}$

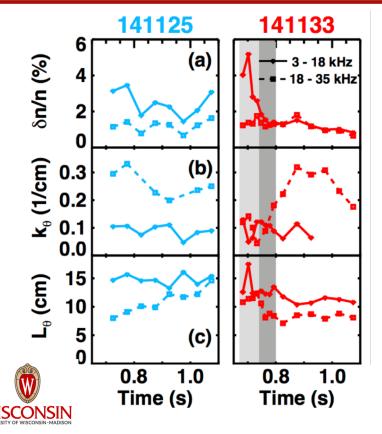
Gerhardt et al. NF 51, 073031 (2011)

Low-frequency modes appear early in ELM recovery, significantly reduced in EP H-mode phase


- Gray boxes correspond to two phases of ELM recovery
 - Saturation of ∇P in dark gray phase
- Low frequency, quasi-coherent edge modes reduced in EP phase
 - Observed early in recovery (light gray) at saturation of $1/L_{\rm Te},\,1/L_{\rm ne}$
 - Onset of TEM and/or MTM (?)
 - Sharp reduction at saturation of ∇P
- Stronger detection of EHO
 - $\Delta f = 6 7 \text{ co-l}_p \text{ kHz}$
 - Resembles broadband EHO

Biggest difference in BES spectra between WP and EP H-mode occurs below 20 kHz

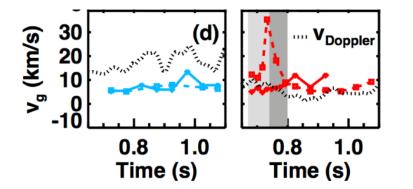
- Average BES spectra over a 200ms time window for 2 edge channels
 - Broad modes from 2 80 kHz on channels imaging $\psi_{\rm N}$ > 0.8 (solid lines)
 - Not observed $\psi_{\rm N}$ < 0.8 (dashed lines)
 - Low frequency (2 18 kHz) modes suppressed in EP H-mode (red)
 - Including coherent modes
- Time evolution of ratio of low frequency spectra (2 – 18 kHz) to total spectra (2 – 80 kHz)
 - Suppression begins near VP saturation

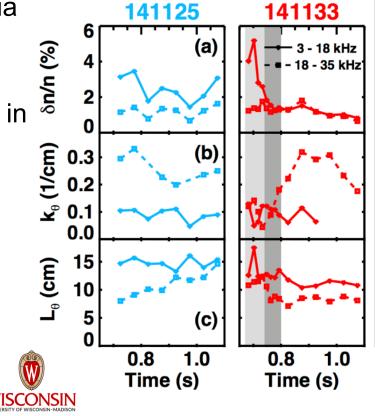


Monday Science Meeting, EP H-mode on NSTX, D.J. Battaglia, April 6, 2020

dn_{iow}/dn_{tot}

Poloidal BES array at $\psi_{\rm N} \sim 0.85$ suggests the poloidal correlation of ion-scale modes is reduced in EP H-mode

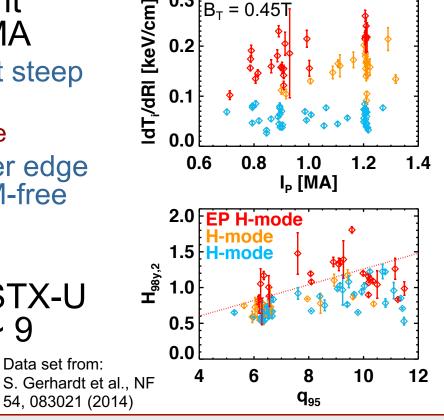

- Single vertical array in BES system images above midplane 0.75 < $\psi_{\rm N}$ < 0.95
 - Solid lines are low-f modes, dashed are mid-f modes
- Panel (a) shows drop in low-f (solid) dn/n for EP H-mode compared to WP
- Panel (b) shows mid-f k_{θ} about 2-3 times low-f except during ELM recovery
- Panel (c) shows poloidal correlation length lower in EP H-mode for all frequencies



Mode direction shifts from electron to ion diamagnetic directed in EP H-mode

- WP H-mode: group velocity is 10 km/s in e-dia direction in plasma frame
 - Consistent with TEM, MTM
- EP H-mode: v_g near Doppler velocity, slightly in i-dia direction
 - Large jump in v_g near onset of grad-P saturation
 - Consistent with MHD-like: KBM, kink-peeling

Characterizing edge instabilities and associated transport is an ongoing activity (R20-1 milestone)


- Hypothesis is that MHD-like activity clamps ∇P by inducing transport, with outsized impact on total D
- WP and EP H-mode have similar linear stability thresholds – No "slam dunk" in terms of crossing a stability threshold
- BES shows lower dn/n, smaller poloidal correlation in EP H-mode
 - Appears to counter hypothesis of increased transport
 - Low-f modes impact SOL; suppression in EP H-mode may change SOL
- BES and magnetics suggest edge modes become more MHD-like
 - Propagation shifts toward ion-diamagnetic direction in the plasma frame
 - Stronger detection of EHO-like oscillations in magnetics with Δf ~ 10 kHz

Outline

- Comparison of WP and EP H-mode
- Neoclassical ion thermal transport at low $\nu_i^{\,*}$
- Bifurcation to EP H-mode following an ELM
- Anomalous transport in ELM-free pedestal
- Potential for EP H-mode on NSTX-U

Best EP H-mode performance achieved on NSTX with $I_p/B_T = 2MA/T$ at $q_{95} \sim 9$

- Highest normalized confinement achieved with $q_{95} \sim 9$, $I_p \sim 0.9 MA$
 - Smaller q_{95} (larger I_p): easier to get steep edge ∇T_i ,
 - $q_0 \rightarrow 1$ soon after entering EP H-mode
 - Larger q₉₅ (smaller I_p): need a lower edge density and harder to get long ELM-free periods
- High performance target on NSTX-U is $I_p = 2$ MA, $B_T = 1T$ with $q_{95} \sim 9$

0.3

B_⊤ = 0.45T

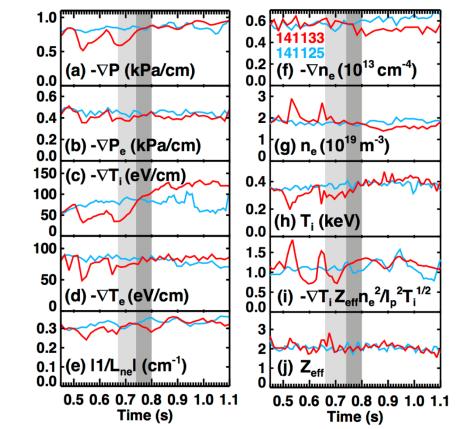
Monday Science Meeting, EP H-mode on NSTX, D.J. Battaglia, April 6, 2020

Data set from:

New tools on NSTX-U should improve access and sustainment of EP H-mode

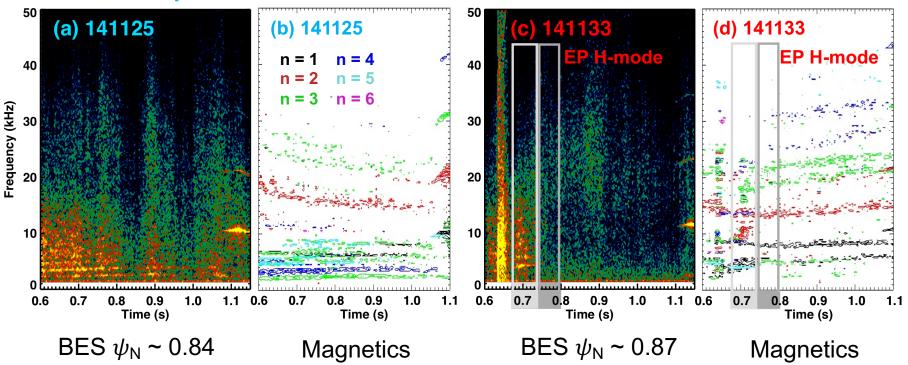
- Double I_p , B_T , n_e , P_{NBI} (same n_{GR}) in simple models
 - Bifurcation regime accessed at larger edge n_{GR} due to $\chi_{i,neo} \propto T_i^{1/2}$
 - Saturated EP H-mode phase sensitive to assumed anomalous electron and ion thermal transport levels
- More tangential NBI + expanded control of non-axisymmetric fields will improve sustainment and provide actuator for optimizing discharges
 - Drive off-axis current to avoid $q_0 \rightarrow 1$
 - Increase edge rotation shear for modifying edge stability through E_r shear
- Expanded wall conditioning capabilities
 - Improved bake-out system and evaporative lithium coverage
 - Longer inter-shot helium GDC
 - Possible reduction in carbon production with fish-scaled tiles
 - Intra-shot conditioning with lithium injection (granule and dropper)
- Expanded diagnostic capability

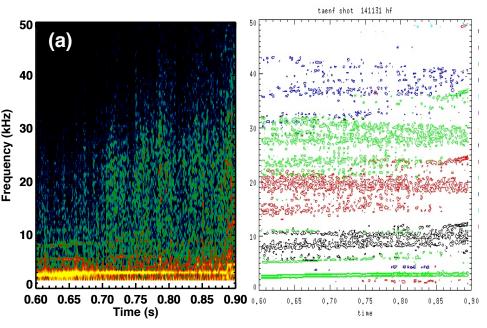
Summary


- EP H-mode is an attractive operating regime for compact fusion devices
 - ELM-free with enhanced edge particle transport (similar to wide-pedestal QH-mode)
 - Enhanced thermal confinement at high β_p with large f_{GW} and f_{BS}
 - NSTX-U will have new tools to sustain, optimize and understand scenario
- Improved thermal confinement and bifurcation following ELM consistent with neoclassical ion thermal transport
 - Simple models and database analysis demonstrates sensitivity to edge density and positive feedback between neo transport and pressure-driven particle transport
- Nature of anomalous transport changes in EP H-mode
 - ETG, MTM, TEM, KBM, K-P predicted to be linearly unstable in edge
 - BES and magnetic measurements suggest ion-scale density perturbations become more MHD-like (KBM, K-P) in EP H-mode
 - Low-frequency coherent perturbations are suppressed in EP H-mode

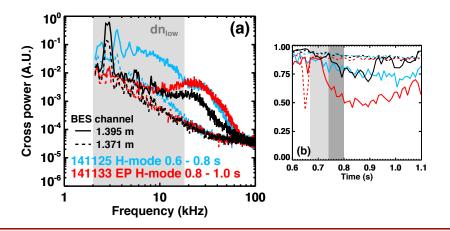
Backup and Extra material

Hypothesis: reduced neutral density leads to "∇T_i overshoot" during ELM recovery

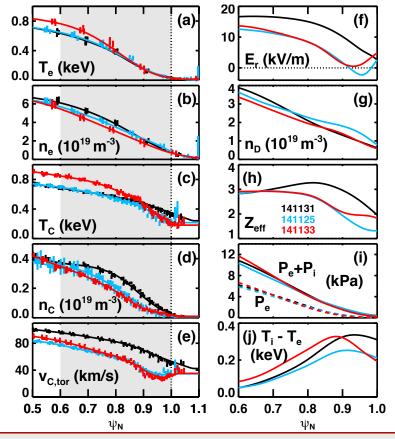

- Plot shows time evolution of local parameters for $\psi_{\rm N} \sim 0.9~({\rm T_e}$ = 140 eV)
- At ∇P saturation (dark gray), ∇n_e decreases with ∇T_i overshoot
 - Assume onset of MHD-like instabilities (KBM, K-P) induce transport
 - Consistent with larger impact on total particle transport compared to total energy transport
 - Later (t > 0.8s) edge n_e decreases
- Larger - ∇T_i "locked in" after full D_{α} recovery by lower edge n_e
 - Consistent with neoclassical scaling


The biggest difference occurs below 10 kHz

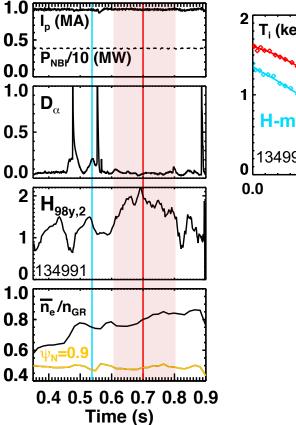
Wide pedestal H-mode

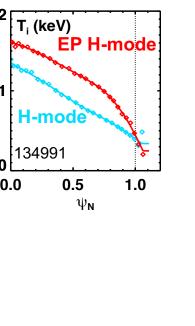


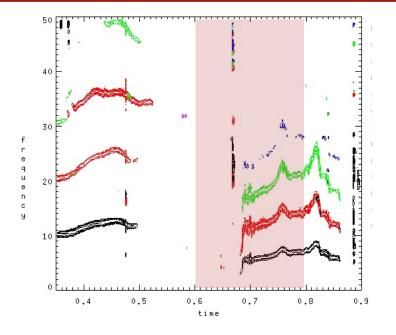
141131: H-mode with EFC only



- Well defined 2.5 3 kHz edge mode
 - Fewer harmonic components detected
 - Similar frequency to 141125 despite differences in $E_{\rm r}$, rotation
 - No broad spectra observed below 18 kHz, but dn_{low}/dn_{tot} similar to 141125
- Broadband EHO detected, but no broad spectra below 18 kHz

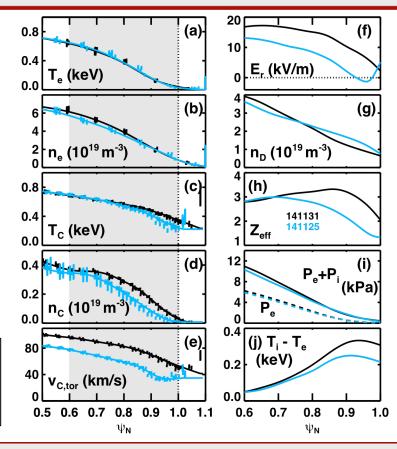

Three matched discharges provide good comparison for wide-pedestal and EP H-mode


WP H-mode 141131 EFC only WP H-mode 141125 EFC + 400A n=3 EP H-mode 141133 EFC + 500A n=3



NSTX-U

Example of EP H-mode with higher normalized confinement (and a coherent EHO??)

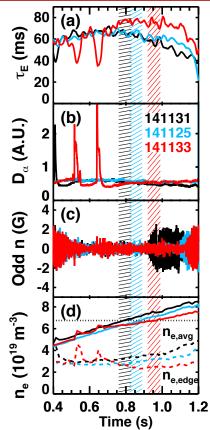


Preliminary hint that modes between 0.7 – 0.87s are edge localized (no BES available). Observed when shaping comes closer to DN

Non-resonant 3D fields in WP regime alters edge E_r, Z_{eff}

- Small impact on electron profiles
 - Little change to T_e
 - n_e slightly broader in edge region
- Bigger impact on ion profiles
 - Rotation, E_r reduced via NTV
 - T_i smaller in edge, matched in core
 - n_D broader, n_C pedestal shifts inwards
 - Significant reduction in edge Z_{eff}
- Pressure profiles are similar

WP H-mode 141131 EFC only WP H-mode 141125 EFC + 400A n=3 EP H-mode 141133 EFC + 500A n=3



Three matched discharges provide good comparison for wide-pedestal and EP H-mode

• Compare MHD-quiescent periods at matched $n_{e,avg}$ - $B_T = 0.45T$, $I_p = 0.9MA$, 3 MW NBI, $q_0 < 2$, $q_{95} \sim 9$, near DN

> WP H-mode 141131 EFC only WP H-mode 141125 EFC + 400A n=3 EP H-mode 141133 EFC + 500A n=3

- Long ELM-free periods with lithium wall conditioning
 - Non-resonant 3D field alters edge, induces ELMs
 - 600A current in 3D coils induces regular ELMs
 - EP H-mode discharge has 2 ELMs, then ELM-free
- $H_{98y,2}$ = 1.2 in WP, $H_{98y,2}$ = 1.35 in EP - Modest EP H-mode with β_N = 5.5

