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▪Modest size
▪ R=36-40 cm

▪ a=20-26 cm

▪ 𝐼𝑝 = 75 − 100 𝑘𝐴 (150+ kA goal)

▪𝐵𝑇 = 0.3 𝑇

▪ 𝑇𝑒 = 150 − 300 𝑒𝑉

▪ 𝑛𝑒 = 1 × 1018 − 2 × 1019 𝑚−3

▪Copper shells for heating, Li 
deposition, and limiting

▪HFS limited

The Lithium Tokamak eXperiment-β, overview
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▪Feed forward 
programming

▪Profile evolution occurs 
throughout the shot

▪Pulse: ~35+ ms

▪For comparable
densities the plasma
current of LTX-β is
significantly higher
than that of LTX

LTX-β shot style
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▪ Brought on by Lithium 
retaining hydrogen in the 
walls

▪ Retention results in rarified
SOL

▪ Results in a “flattened”, 
elevated temperature

▪ Hot core fueling is required 
to sustain
▪ That means NBI is needed
▪ Without NBI this is intrinsically 

short lived

▪ May lead to interesting new 
physics
▪ Low neutral drag
▪ Very High ion temps.

Low recycling regime (from LTX)
+ Thomson Scattering   ▪ Reflectometer

D.P. Boyle PRL 2017
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Upgrade Overview

▪ Thomson scattering: Improved camera, fibers, dump

▪ Magnetic sensor array for mode analysis

▪ Langmuir probes/RFEA for SOL ions

▪ CHERS, multiple visible spectrometers

▪ Sample Exposure Probe for PMI study

▪ Filtered fast cameras, XUV/UV spectrometers

▪ Interferometer & reflectometer enhanced for ñe
8

D. Elliott SOFE/IEEE 2019
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▪Dual evaporators for greater 
coverage

▪ Smaller “heating element” for
faster coverage

▪Evaporating from midplane for
more even coating

▪Quartz Crystal Deposition 
system to monitor Li thickness

▪ Sample Exposure Probe (SEP) 
used for studying PMI

Lithium evaporators



Sample Exposure Probe and PMI studies

Mechanism for hydrogen retention in lithium PFCs 
explored on LTX-β with Sample Exposure Probe (SEP)

Lithium 
Evaporator

Quartz Crystal 
Microbalance

SEP inserted flush 
with LTX shells

A. Maan RSI 2019; SOFE/IEEE 2019

▪ Interfaced with the 
surface science laboratory 

▪Can study lithium 
evolution over time

▪Determines surface
chemical make-up
▪ Which compounds are 

present 

▪ In what abundances

▪ At what thicknesses

▪ Then related back to
plasma performance
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SOL diagnostics: Langmuir probes and RFEA

▪ SOL mirror confined
▪ Electric fields not confined to 

sheaths
▪ Loss rate determined by ion pitch 

angle scattering
▪ Pastukhov potential   𝜑p ~ 0.7 Te for 

LTX
▪ SOL electric field should eject 

sputtered impurities

▪ 4x high field side single 
Langmuir probes

▪ Low field side single Langmuir 
probe

▪ Retarding field Energy Analyzer

X. Zhang PSI/NME 2019



Fast filtered cameras, XUV/UV spectrometers
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▪For studying 
impurity 
radiation

▪Also used for 
aiming and 
divergence 
estimates of NBI 

▪Also used for 
tracking plasma 
location and 
evolution 



Microwave Interferometer & Reflectometer
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▪ Increase to have 28 re-entrant 
orthogonal 3-D Mirnov triplets 
(previously 18 triplets)

▪ Toroidal, axial, perpendicular

▪ 20 in plane centered in toroidal gap

▪ Sensitive to poloidal m < 6  

▪ 8 off-center, off-radial in gap

▪ Top-Bottom/Left-Right/In-Out

▪ Add 10x  1-D Mirnovs

▪ Sensitive to n < 5 perturbations

▪ Mounted to vessel wall at midplane

▪ Add 7x 2-D Mirnov pairs

▪ East/West Edge, Upper, Midplane; 
North Midplane

▪ Perpendicular & tangential to shell 

▪ Sensitive to eddy currents in shells

Enhanced Magnetics for improved equilibria & 3-D 
eddy currents, perturbations, & instabilities

Hughes HTPD/RSI 2018



CHERS enables local Ti, vTor, nimp profiles

▪ 2 sets of views to increase 
coverage 

▪ 13 core views from 26-43.5 cm

▪ 13 edge views from 43-59 cm

▪ Symmetric passive views for 
background subtraction 

▪ f/1.8, 75 mm commercial optics

▪ spacing/resolution: ~1.3 cm 

D. Elliott HTPD/RSI 2018
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▪ Initially seemed to work
great.
▪ Fueling seems evident in

interferometry case

▪ Increase in stored energy 
indirectly measured

▪ Matched trend from 
NUBEAM

▪ Seemed to only need
increases in power and
reliability

Initial NBI data 
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▪ Operational improvements to 
flatten all of the curves
▪ New valves
▪ Refreshed power supply

▪ Increased perveance 
▪ For these results ~20 µP at 16.5 keV 
▪ was ~15 µP at 18.5 keV 
▪ Accompanied reduction in divergence

▪ Occurs well beyond spec, µP
▪ Divergence may change with different 

beam voltage

▪ Power supply 20 keV
▪ 15-20 keV nearly doubles CXS 

emission cross section
▪ Unclear if divergence will stay low
▪ Currently testing

Beam Optimization
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▪ Specifications
▪ Divergence <0.02 rad

▪ Perveance: <15 μP

▪ Measured optimal 
perveance 20 μP; operating 
at 16.5 keV
▪ This was the minimized

divergence

▪ We need minimized 
divergence to get the beam
into the plasma

▪ This higher perveance means 
we need relatively higher 
current for a given voltage

Beam Optimization

Courtesy of R. 
Bell & the HAL 
spectrometer
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▪ 3DOrb simulation is a
‘worst-case scenario’
▪ Excludes slowing down 

collisions

▪Currently much of the
NBI is lost in this model

▪To reduce loss fraction:
▪ Reduce beam energy

▪ Increase plasma current

▪ Ensure low recycling 
regime/high plasma 
potential

NBI modeling  

16 keV beam ions (full energy)
8 keV beam ions (half energy)



21

▪Evidence of low 
recycling regime with 
LP
▪ Fueling halted at 457 ms

▪ Low edge density

▪ High edge temperature

▪TS from later shots
show flat T_e

▪Not enough data to be 
conclusive, but we are 
close

Evidence of low recycling regime

HFS LP data 
Before and After 
Li deposition

Measurements, TRANSP, Psi-TRI
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▪NBI occurs from 463-
468 ms, near peak 
current and density

▪ Increases in 
Temperature & Pressure

▪Density not obviously 
effected

▪Averaged over several
shots

▪ I_p~75 kA, thus not 
ideal performance or 
confinement

Performance of NBI with solid Li walls



Psi-Tri Equilibria reconstructions (hot walls)
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T=460 ms T=465 ms T=468 ms

▪ Consistent plasma shape, moving slightly outward during NBI. 
▪ Centroid near 40 cm, very near the limit of TS profile
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▪Results from TRANSP 
and Thomson 
scattering
▪ Stored energy 

increases with NBI

▪ Density does not seem 
to change with TS
▪ It does change with

interferometry

▪ Energy confinement
also increases, but not
as convincingly

NBI performance in LTX-β with solid lithium
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▪Results from TRANSP 
and Thomson scattering
▪ Density, stored energy, 

and energy confinement 
all increase

▪The data is not strong
enough to conclude 
that NBI is more 
effective with hot 
walls
▪ Continued discharge 

development with both 
conditions is necessary 
to draw any final 
conclusions

NBI performance in LTX-β with liquid lithium



Comparison between solid and liquid lithium

Solid wall discharges Hot wall discharges
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There are some effects, especially on stored energy, but we need 
to improve coupling for both scenarios.



▪Charge exchange light 
observed occasionally in 
the core (R=39 cm) 

This data is preliminary

▪With T_e~150 eV
▪ Higher temps mean more

source particles and less
background

▪NBI_V~16.5 kV
▪ The CX cross section at

20 kV is nearly double 
that at 16.5 kV

First light from Charge Exchange
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Eq. Reconstruction at 465 ms

Courtesy of R. 
Bell & the HAL 
spectrometer

Courtesy of R. 
Bell & the HAL 
spectrometer
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▪ Improve NBI 
▪ Broaden Thomson coverage
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▪ Increase power coupled 
into the plasma
▪ We can now operate at full 

spec energy (20 kV)
▪ Keep divergence

down/perveance up
▪ Improve coupling fraction

▪ Increase plasma current
▪ Decrease beam voltage

▪ Decreases total power

▪ Improves coupling 
efficiency

▪ Makes CX even harder

▪ More plasma current 
solves everything, but is a 
challenge

NBI future optimization for coupling

16 kV 8 kV
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▪ 20 kV improves CX by 
more than 2x
▪ 20 kV will need 56 amps 

to maintain 20 μP (>1
MW/~150% spec)

▪ May not require such
high Perv. At 20 kV

▪ 20 keV will have high 
shine through
▪ Good for CX, very bad for

coupling

▪Oscillating supply seems 
to be the best solution 
but will take time

NBI future optimization for CX/measurements



High field side Thomson views planned

▪ Help constrain magnetic axis

▪ Give single shot profile
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▪Coverage R=25-40 cm
▪ To ID centroid

▪Using polychromators
▪ Higher temps
▪ Fewer views
▪ Maximize throughput
▪ ~f/1

▪ Ideal fibers ~f/1.1

▪Use commercial optics
▪ Selecting f/# and fl
▪ 85 mm f/1.2 works best

HFS TS optimization Criteria



Current status, and review

▪ Upgraded diagnostics
▪ Commissioned TS, CX, LP, PMI studies,

Magnetics, visible spec., Improved 
Interferometry and reflectometry

▪ Improving TS and probes for recycling

▪ NBI commissioned
▪ Low voltage good for coupling
▪ High voltage good for CX and max power

▪ Liquid and solid lithium performed similarly
▪ Further shot development needed to confirm
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