Correlation of pedestal fluctuations and inter-ELM recovery leading to reduced ELM frequency in ECH dominated discharges in DIII-D

S. Banerjee/NSTX-U / Magnetic Fusion Science meeting, July 06, 2020

This talk: in a nutshell

- ELM frequency reduced by 40% when heating is changed from pure NBI to predominantly ECH in DIII-D
 - At similar or even a bit higher total injected power
- The question is: why does the ELM frequency change so drastically?
 - While the major plasma parameters, like I_p , shape, q_{95} , remain similar
- Excitation of quasi-coherent modes and role of turbulence driven transport
- And finally: what are the implications?

Working hypothesis

 Better understanding of the pedestal recovery and effects of turbulence driven transport on that recovery may provide additional tools, like heating mix, for ELM control in ITER – at least prior to the burning plasma phase

ELMs – the peeling ballooning instability

- Sharp pressure gradients, and consequent large bootstrap currents at the pedestal, can destabilize peeling and ballooning modes
- The dominant modes are referred as coupled 'peeling-ballooning' modes and are driven by both parallel current (J_{ped}) and the pressure gradient (p'_{ped})
- These intermediate n (4~40) peeling–ballooning modes impose constraints on the pedestal height, which are functions of the pedestal width, collisionality, etc.

Peeling-ballooning (PB) model for ELMs

ELMs – the peeling ballooning instability

- ELMs can be mainly type I, II or III: we will focus on type I (giant) ELMs
 - frequency of type I ELMs increases with the power input crossing the edge plasma
 - ELM characteristics do not depend on the power deposition location or the heating mix
- Several experimental observations where ELMs are not triggered even though pedestal gradients have reached critical PB gradients and continue in a long metastable state prior to an eventual onset of ELM
 - in most cases, in the inter-ELM period, some turbulent mode appears that alters transport and hence affects pedestal recovery
 - PB model may not be sufficient to describe the inter-ELM pedestal recovery – no comprehensive understanding till today
- Role of turbulence and interplay of turbulence and gradient recovery after ELMs leading towards the next ELM is quite crucial

Pedestal gradient recovery has strong impact on ELM characteristics

- Modifying the pedestal gradient recovery in the inter-ELM phase can lead to very different ELM characters – both amplitude and frequency
 - Pedestal recovery can be influenced greatly by tweaking the underlying turbulence and transport
 - Turbulence and transport in the inter-ELM regime can be modified by changing the several factors like ∇T_e , T_e/T_i ratio and collisionality
- Adding ECH can modify the pedestal ∇T_e as well as lower collisionality
- Here we focus on the pedestal density, temperature and pressure recovery in the pure NBI and ECH dominated discharges
- Along with the associated fluctuations

S. Banerjee/NSTX-U / Magnetic Fusion Science meeting, July 06, 2020

Outline

Experimental setup

- Plasma parameters
- Pedestal. structure
- MHD stability ELITE

• Pedestal recovery and associated turbulence in the inter-ELM phase

- Magnetic fluctuations fast magnetics
- Density fluctuations Doppler backscattering (DBS)
- Turbulence and transport characteristics from simulations
 - TRANSP
 - TGLF
- Summary

• S. Banerjee et al., manuscript for NF under internal review

Outline

Experimental setup

- Plasma parameters
- Pedestal. structure
- MHD stability ELITE
- Pedestal recovery and associated turbulence in the inter-ELM phase
 - Magnetic fluctuations fast magnetics
 - Density fluctuations Doppler backscattering (DBS)
- Turbulence and transport characteristics from simulations
 - TRANSP
 - TGLF
- Summary

• S. Banerjee et al., manuscript for NF under internal review

ELM dynamics: 40% reduction in ELM frequency in ECH dominated shots as compared to pure NBI

- LSN discharge; ECH deposition at ρ = 0.2; balanced torque; P_{tot} 3~4 MW
- Much higher ELM frequency ($f_{ELM} \sim 46$ Hz) in pure NBI shot (#153100)
 - P_{inj} is 3 MW

- More regularly spaced, lower frequency ELMs (*f_{ELM}* ~ 27 Hz) in ECH shot (#153116)
 - Each large ELM crash is followed by one or two small spikes in Dα
 - Higher total power ~4MW

Average pedestal profiles: ELM synced; 70-99% of ELM cycle

- In ECH shot: majority of NBI is replaced by ECH
- NBI is in blips for CER measurements
- n_e pedestal lower, T_e pedestal higher in ECH; p_e pedestals are almost comparable
- *T_i* is comparable at pedestal for both shots
- Absolute ∇*T_e* higher for the ECH shot as compared to NBI shot at steep gradient
- Some variation in the *E_r* well

Pedestal stability

- For the ECH shot, the pedestal is close to the peeling boundary while for the NBI shot it is a bit more far away and is more towards the PB nose
- However, in both the cases, the limiting mode number is $n \sim 3$

Pedestal recovery following ELMs: phase-locked analysis of Thomson Scattering data – ELM at $\Delta t = 0$

S. Banerjee/NSTX-U / Magnetic Fusion Science meeting, July 06, 2020

Pedestal recovery following ELMs: Gradients recover much faster in NBI shots

- Pedestal decay with ELMs is smaller in NBI case compared to ECH case
- Initial recovery of gradients similar in NBI and ECH shots

13

• Sharp drop in gradients for the ECH shot at ~13 ms: due to the small D_{α} spike(s)

S. Banerjee/ NSTX-U / Magnetic Fusion Science meeting, July 06, 2020

Pedestal recovery following ELMs: Gradients recover much faster in NBI shots

- Closer look at ∇n_e from profile reflectometry data with high time resolution
- Steady recovery of both n_e^{PED} and ∇n_e in NBI shot

14

 Several phases in ∇n_e recovery in ECH shot, mainly due to n_e pedestal width recovery; n_e pedestal height increases rather monotonically

S. Banerjee/NSTX-U / Magnetic Fusion Science meeting, July 06, 2020

Outline

Experimental setup

- Plasma parameters
- Pedestal. structure
- MHD stability ELITE

Pedestal recovery and associated turbulence in the inter-ELM phase

- Magnetic fluctuations fast magnetics
- Density fluctuations Doppler backscattering (DBS)
- Turbulence and transport characteristics from simulations
 - TRANSP
 - TGLF
- Summary

• S. Banerjee et al., manuscript for NF under internal review

Fast magnetics on DIII-D

- Low inductance, high resonant freq. probes:
 - turns: N = 32, surface area: A = 15:625 cm², NA = 0.05 m²,
 - inductance: L = 25 μ H, cap: C = 210 pF
 - resonant frequency: $f_{res} = 2.2 \text{ MHz}$
 - B1 and B2 separated toroidally by 2.2°
- Signals digitized at 2 MHz

S. Banerjee/NSTX-U / Magnetic Fusion Science meeting, July 06, 2020

Distinct low frequency magnetic modes (in \vec{B}_{θ}) in the inter-ELM period for the ECH shot

- 2 MHz acquisition in fast-magnetics
- ~150 kHz mode prior to each ELM is present in both cases (white arrows)
- Low frequency quasi-coherent modes (13~116 kHz) present in the ECH case (green arrows), prior to major ELMs

- Caveats:
 - Only 2 probes; Lab frame measurements, $v_{turb} = v_{ExB} + v_{ph}$
 - $v_{ExB} >> v_{ph}$ Further, fairly large uncertainties in v_{ExB}
 - Mode analysis also not possible: poloidal/toroidal Mirnov arrays do not see these modes due to gain settings (to avoid saturation by core modes)

Evolution of magnetic modes in the inter-ELM period of the ECH shot

- Mode amplitude evolution shows growth after ~12 ms
- Note: a small bump at ~5 ms
- Two possibilities: •
 - Seems ∇T_e needs to reach a certain threshold to trigger the growth of the magnetic modes
 - Modes seems to _ grow only within a narrow-bounded value of the gradients

DBS – 400 kHz mode evolution; density pump-out with ECH

- Distinct mode at 400 kHz; at ρ =0.95 and $k_{\theta}\rho_s \sim 0.9$ (TEM-scale)
- Mode amplitude increases following ECH at 2000 ms
- Shows correspondence with density pump-out & increased ∇*T_e* due to ECH at 2000 ms
- This mode is localized at the steep gradient region of the pedestal
 - With ECH, chord-averaged density decreases leading to inward movement of higher frequency DBS channels. But lower frequency channels don't move
 - Lower frequency channels see an increase in mode amplitude whereas higher frequency channels don't see these modes following ECH injection

S. Banerjee/ NSTX-U / Magnetic Fusion Science meeting, July 06, 2020

DBS spectra: Interplay of modes and correlation with pedestal recovery

- Last 4 channels on the pedestal gradient not moving appreciably
- Fig. (e): DBS Frequency spectrogram at ρ = 0.95
 - Following an ELM crash: mutually exclusive occurrence of a quasicoherent mode at ~400 kHz and a high frequency mode at ~2 MHz
- Modes' evolution well correlated with the ELMs and the small Dα spikes
- *v*_{ExB} increase well correlated with the growth of ~2 MHz mode

DBS spectra: Interplay of modes and correlation with pedestal recovery

- Mode at ~400 kHz survives only when the gradients are within two horizontal red broken bounds
- Gradients relax slightly due to small D_{α} spike in phase #3
- Gradients are again within bounds in phase #4 and ~400 kHz mode appears

S. Banerjee/ NSTX-U / Magnetic Fusion Science meeting, July 06, 2020

Outline

Experimental setup

- Plasma parameters
- Pedestal. structure
- MHD stability ELITE

• Pedestal recovery and associated turbulence in the inter-ELM phase

- Magnetic fluctuations fast magnetics
- Density fluctuations Doppler backscattering (DBS)
- Turbulence and transport characteristics from simulations
 - TRANSP
 - TGLF
- Summary

• S. Banerjee et al., manuscript for NF under internal review

Transport coefficients (TRANSP)

- $D_e << \chi_e$ (Fingerprints: M. Kotschenreuther et al., Nucl. Fusion 59, 096001 (2019))
 - Most likely candidate is MTM or ETG in this regime
- From pedestal top till steep gradient (ρ =0.98), $D_e << (\chi_i + \chi_e) \& \chi_i \sim \chi_e TEM$ possible

Linear gyrofluid simulations show that frequencies are in the electron direction at ion scale

- Linear gyrofluid simulations performed with TGLF from $\rho = 0.8 \sim 1.0$
 - For most dominant mode, growth rate peaks at ρ = 0.98, steep gradient region; Growth rate is much higher for ECH dominated discharge
 - Frequency is positive and hence, in the electron direction for $k_y \rho_s < 1$
 - Could be MTM dominant as MTM almost exclusively accounts for electron heat transport and no particle transport, ion-scale, electron temperature gradient driven and frequencies in electron direction

ECH discharge: (a/L_{Te}) scan in TGLF at $\rho = 0.98$ (pedestal steep gradient region)

- Both electron and ion energy and particle fluxes increase with a/L_{Te}
 - electron and ion density profiles expected to flatten with increase in ∇T_e
- This observation either rules out ETG or demands co-existence with other modes responsible for the particle flux
 - ETG mostly electrostatic, rather small scale ($k_{\theta}\rho_s \approx 10$) and not trivial to access experimentally with diagnostics like DBS
- Large increase in the ion momentum flux toroidal rotation profile expected to flatten with increase in VT_e

ECH discharge: (a/L_{Ti}) scan in TGLF at $\rho = 0.98$ (pedestal steep gradient region)

- Increasing a/L_{Ti} will decrease both the ion and electron particle transport, thus steepening the density profiles
- Will have negligible effect on energy and momentum fluxes

- indicates that the plasma is ITG stable at this radius as the electron and ion thermal transport is not increasing with increase in a/L_{Ti}
- Turbulent transport is mostly dominated by ∇T_e driven fluctuations.
 - Hence, the increased turbulence observed in the ECH dominated discharge is most likely of the MTM and/or TEM nature

Summary – I

- Type I ELM frequency decreases by 40% in ECH dominated plasmas compared to pure NBI
 - May be a mixed ELM regime in the ECH shot
- Density and temperature pedestals are different in NBI vs ECH; pressure pedestal is similar
- Phase locked analysis shows ∇T_e recovering simultaneously with ∇n_e and ∇p_e in ECH shot
 - Pedestal recovery. patterns look different in ECH and NBI shots
- Fast-magnetics show distinct MTM-like modes in inter-ELM period
 - $-\nabla T_e$ needs to be within a narrow-bounded value for growth of these modes
- DBS shows occurrence of 400 kHz TEM-like quasi-coherent mode and high frequency ~2 MHz broadband turbulence in the inter-ELM period
 - Well correlated with the pedestal ∇T_e evolution
 - 400 kHz coherent mode also appears within narrow bounded value of gradients
 - enhances transport and holds gradients lower for ELMs to occur for a longer period of time

Summary – II

- Transport coefficients suggests MTM and/or TEM are the most likely candidates for observed fluctuations
- Linear eigenmode analysis shows
 - Frequency of most dominant mode peaks at steep gradient region of pedestal
 - frequencies are in electron direction at ion-scale
- *a*/*L*_{Te} and *a*/*L*_{Ti} scans confirm
 - Turbulence at steep gradient region is ∇T_e driven
 - Plasma ITG stable at that radius (steep gradient)
- Collisionality, ratio of heating mix (NBI to ECH) and ECH deposition radius are crucial parameters to study further the effects on turbulence and associated transport
 - Planned for upcoming campaign

Thank you for your attention

S. Banerjee/NSTX-U / Magnetic Fusion Science meeting, July 06, 2020