Acceleration of MHD rotation due to torques driven by NBI fast ion losses in LTX-β

Paul E. Hughes

in collaboration with

W. Capecchi, D.E. Elliott, L.E. Zakharov, R.E. Bell, C. Hansen,

D.P. Boyle, S.N. Gorelenkov, R. Majeski, R. Kaita

Key Points

- LTX-β toroidal Mirnov array for stability studies
- $Co-I_P$ NBI added to provide core heating and fueling
- NBI-independent *n*=1 mode observed on toroidal array
 - Accelerated in counter-beam direction during injection
 - Indicates prompt loss of NBI ions
- Ion loss and resulting rotation dynamics modeled
 - Indicative of momentum and ion energy confinement times
- Based on March 2019 data

Overview

- Motivation: LTX to LTX- β
- LTX- β magnetics upgrade
- NBI performance
- NBI discharge observations
 - Fueling
 - MHD rotation
- Modeling
 - Fast ion losses
 - Torque analysis
- Conclusions

Overview

- Motivation: LTX to LTX-β
- LTX- β magnetics upgrade
- NBI performance
- NBI discharge observations
 - Fueling
 - MHD rotation
- Modeling
 - Fast ion losses
 - Torque analysis
- Conclusions

Lithium improves tokamak performance

- Lithium as a plasma-facing component (PFC) key to LTX
 - Coatings known to improve plasma performance
 - Benign impurity source: low *Z*, sputtering improves >200eV
 - Lithium retains hydrogenic ions (plasma chemistry?)
 - Potential for liquid/flowing PFC
- Predicted low-recycling / flat T_e regime $\begin{bmatrix} S.I. Krasheninnikov \\ 2003 PoP \end{bmatrix}$
 - Increased fusion volume in reactor
 - Reduced gradient-driven transport
 - Improved stability

Low-recycling regime observed in LTX

- "Isomak" flat T_e profile observed in LTX [R. Majeski 2017 PoP]
- However: edge fueling incompatible with low-*R* study
 - No fueling means n_e decays while T_e flattens
 - Transient state complicates analysis
 - Low n_e reduces TS fidelity: error bars $0.03T_e \rightarrow 0.25T_e$ at edge
- Need hot core fueling source: neutral beam injection (NBI)

Overview

- Motivation: LTX to LTX-β
- LTX-β magnetics upgrade
- NBI performance
- NBI discharge observations
 - Fueling
 - MHD rotation
- Modeling
 - Fast ion losses
 - Torque analysis
- Conclusions

Toroidal Mirnov array for stability studies

- MHD stability of LTX regime not empirically studied
 - No toroidal resolution in LTX: Mirnov array only at $\varphi=0$
- NBI heating and fueling should increase β (pressure)
 - 700kW beam heating >> Ohmic power (peak ~100kW)
- Developed new toroidal Mirnov array [P.E. Hughes]
 - 10 spare 1-D Mirnov sensors from NSTX-U
 - Sensitivity benchtop calibrated to $\sim 3\%$
 - 2.5% propagated from test jig calibration
 - <1% loss up to 10kHz

8

Toroidal Mirnov array implemented

- Mounted to vessel wall
 - 10 locations \rightarrow *n*≤4 sensitivity
- Some locations prohibited
 - e.g. AXUV view (J), beam dump (K)

Toroidal Mirnov array implemented

- Constructed w/ gap on $-\varphi$ side
 - Protection from lithium
 - Heat shield for fast ions
 - Cable runs avoid shell gaps

MHD spectroscopy tracks mode evolution

- Equilibrium subtraction
- Biorthogonal decomposition $(SVD)^{\frac{T}{2}}$
 - Form sensor x time signal matrix \hat{S}
 - SVD yields $\hat{U} \cdot \hat{\Sigma} \cdot \hat{V}^* = \hat{S}$
 - ^o Spatial (U) and temporal (V) modes
 - BD mode = 2 matched SVD modes
 - Correlated sin&cos = rotating cos
- Track phases for frequency
 - Low amplitude \rightarrow lost phase track

G

B

-2

- n=1

 $\tilde{B}_{ heta}$ [G]

350 300

[250 200 150

> 00 ج 50

> > 464 0

464.5

465.0

time [ms]

465.5

Overview

- Motivation: LTX to LTX-β
- LTX-β magnetics upgrade
- NBI performance
- NBI discharge observations
 - Fueling
 - MHD rotation
- Modeling
 - Fast ion losses
 - Torque analysis
- Conclusions

NBI added for hot core fueling

- Budker Institute neutral beam source rated for 20kV, 35A (700kW)
 - Auxiliary heating ~1 MW/m³
 - Maximum fueling ~5%/ms
 - CHERS for T_i and v_{φ} profiles
 - Injects co- I_P (- ϕ) into vessel
 - *R_{tan}* ~ 21cm
- Injection period ~5ms
- Calorimetry on scrapers and dump

Nominal NBI performance

LTX-B

- 700kW optimal power at source
- Full/half/third energy fractions
 - ~82%/15%/3%
- ~90% max neutralization rate
- Divergence 20mrad
 - ~95% injection fraction
- Total injected beam:
 - 550kW

NBI observations: beam diagnostics

NBI observations: beam diagnostics

NBI observations: beam diagnostics

LTX-B

- Max $E_{DP}/E_{beam} \sim 13\% \rightarrow d \sim 55 \text{mrad}$
- Max $E_{DP}/E_{Scr} \sim 2 \rightarrow d \sim 40 \text{mrad}$
 - Spectroscopy \rightarrow *d*~35mrad
 - Only 2 frames during NBI
- Discrepancy not yet explained
 - Complications to beam optics?
 - Flaws in calorimetry diagnostics?
- For d=35mrad, ~68% injection into torus
 - Alternative models show 63-73% injection

18

Optimal NBI Power and Torque Injection

- NUBEAM agrees well with preliminary NBI discharges
 - ~70% shine-through in target discharge
- Accounting for injection, neutralization, and shine-through,

with full fast ion confinement:

$$\begin{split} & P_{\rm \tiny NBI} \sim 120 \, {\rm kW} \, \left(P_{\rm \tiny OH} \sim 100 \, {\rm kW} \right) \\ & \Gamma_{\rm \tiny NBI} \sim 4 \times 10^{19} \, {\rm s}^{-1} (N_e \sim 2.5 \times 10^{18}) \\ & \vec{\tau}_{\rm \tiny NBI} \sim -10 \, \hat{z} \, {\rm mN} \cdot {\rm m} \\ & \Delta N_e / N_e \sim 8 \, \% \end{split}$$

- Calculating slowing down time $\tau_s = 6.28 \times 10^8 \frac{T_e^{2/3}}{n_e \ln \Lambda} \sim 10 \,\mathrm{ms}$ $\Delta f_{\phi} \sim -1.5 \,\mathrm{kHz}$ during NBI

NSTX-U Physics Meeting, July 13th 2020

Overview

- Motivation: LTX to LTX-β
- LTX-β magnetics upgrade
- NBI performance
- NBI discharge observations
 - Fueling
 - MHD rotation
- Modeling
 - Fast ion losses
 - Torque analysis
- Conclusions

NBI and Non-NBI Discharge Styles

- Target discharge style: initial beam-into-plasma series
- Peak $I_P \sim 85$ kA, I_P during NBI 67-80kA
- Before NBI, $\int n_e dl \approx 1 \times 10^{18} \,\mathrm{m}^{-2}$

NSTX-U Physics Meeting, July 13th 2020

21

Plasma Response: Fueling

- $\Delta \int n_e dl \approx 33\% \int n_e dl$
 - ~ injected beam fluence
- Diamagnetics $\rightarrow \Delta p \sim 0$

- E 2.0 $3^{\text{st}} 0.5$ $3^{\text{st}} 0.5$ $3^{\text{st}} 0.5$
- $\Delta n_e >> \Delta p$ implies fueling during NBI is *cold* gas
 - Not seen with beam gas alone, only full NBI
 - Liberated from lithiated wall?
 - Jan. 2020: moderate T_e peaking during NBI
- Observations are all consistent with prompt fast ion losses

NBI Observations: Plasma Response

- MHD also consistent w/ $\Delta p \sim 0$
 - *n*=1 mode amplitudes
 - Similar w/ and w/o NBI

NBI Observations: Plasma Response

• MHD also consistent w/ $\Delta p \sim 0$ m⁻². _{1.5}[a) dl [$\times 10^{18}$ 1.0 aseline (100988 - *n*=1 mode amplitudes Baseline (100989) 0.5 Beam (100981) Beam (100985) Similar w/ and w/o NBI 2.5 b) 2.0 <u>ن</u> 1.5 NBI affects MHD rotation m[®] 1.0 - $\Delta f_{\phi}^{spont} \sim -3.5 \,\mathrm{kHz}$ [kHz] $-\Delta f_{\phi}^{NBI-opt} \sim -1.5 \text{ kHz}$ NBI No NBI - $\Delta f_{\phi} = \Delta f_{\phi}^{NBI-obs} + \Delta f_{\phi}^{spont} \sim 1.5 \text{ kHz}$ 350 F 300 d) 100988 250 200 150 • *Counter*-NBI (+ ϕ) torque 150 100 Consistent with fast ion loss 50 466 468 470 472 474 476 time [ms]

Overview

- Motivation: LTX to LTX-β
- LTX-β magnetics upgrade
- NBI performance
- NBI discharge observations
 - Fueling
 - MHD rotation
- Modeling
 - Fast ion losses
 - Torque analysis
- Conclusions

NSTX-U Physics Meeting, July 13th 2020

3Dorb models fast ion losses

- 3Dorb: 3D particle tracker by Zakharov and Gorelenkov
 - Full orbit tracking
 - Axisymmetric wall model $_{\widehat{\mathfrak{S}}}$
 - Can include *E_r* effect on confinement of ions
- TRANSP+NUBEAM
 - Modeling in progress

3Dorb models f_{loss} vs U_{p}

100

75

50

25

- f_{loss} reduced by U_{plasma}
- Assuming $\vec{v}_{MHD} = \vec{v}_{\vec{E}_r \times \vec{B}_{\theta}}$ l_{loss} (%)
 - $U_{plasma} \sim V_{MHD} B_{\theta} r_{a}$
 - Shaded regions:
 - Black: Non-NBI
 - Red: NBI-accelerated
- Suggets neglecting *E*, is valid for this discharge style

Torques estimated with analytic model

- Wesson-like n_e with $\int n_e dl$ from microwave interferometry
- Sum of torques...
 - Injected torque (- φ) $\vec{\tau_{inj}} = m_p \sum_{\eta} \sum_{\epsilon} \Gamma^{\eta}_{\epsilon} \vec{f}^{\eta}_{dep} (\vec{R}^{\eta}_{tan} \times \vec{v_{\epsilon}})$
 - Fast beam ions damping against thermal population

- JxB torque (+
$$\varphi$$
) $\vec{\tau}_{\vec{J}\times\vec{B}} = \langle \vec{R}_0 \times (\vec{J}_r \times \vec{B}_\theta) V_{\vec{J}} \rangle$

- Lost ions $\rightarrow +J_r$ with poor torque coupling
- Ambipolarity \rightarrow well coupled thermal ion $-J_r$
- Poloidal & toroidal, but poloidal flow damped
- Anomalous viscous Torque $\vec{\tau}_{anom} = m_p \langle n_e V_j \rangle (\vec{R}_0 \times \vec{V_{\phi}}) / \tau_{\phi}$ [5]
 - $\circ \ au_{\phi}$ is the momentum confinement time
 - Torque damps acceleration, taken relative to spontaneous rotation

Rotation evolution reveals transport

node freg.

- Torque balance: $\vec{\tau}_{tor} = \vec{\tau}_{inj} + \vec{\tau}_{J \times \vec{B}} + \vec{\tau}_{anom}$
- **NBI & No NBI trends from observations**
- Torque modeling parameters:
 - Measured: I_{beam} , $\int n_e dI$
 - Estimated: $f_{shinethry}$, f_{lost}
 - Free parameter: τ_{ϕ}
- Best $\tau_{\phi} \approx 1.2 \,\mathrm{ms}$
 - Torque delayed
 - $\tau_{delay} = \tau_{\phi} + \tau_{on}^{NBI} \approx 1.7 \,\mathrm{ms}$ - $\tau_{E,i} \sim \tau_{\phi} \begin{bmatrix} \text{C.S. Chang} \\ 1999 & NF \end{bmatrix}$

NSTX-U Physics Meeting, July 13th 2020

Overview

- Motivation: LTX to LTX-β
- LTX-β magnetics upgrade
- NBI performance
- NBI discharge observations
 - Fueling
 - MHD rotation
- Modeling
 - Fast ion losses
 - Torque analysis

Conclusions

Conclusions

- NBI now standard in LTX-β operation
- Toroidal Mirnov array implemented for stability studies
- Pre-existing n=1 mode counter-accelerated by NBI
 - Suggests prompt loss of NBI ions
 - J_r generates counter- $I_P J \times B$ torque
- Analytic model suggests τ_{ϕ} , $\tau_{E,i}$ ~1.2ms
 - Compare $\tau_{E,e} \approx 1$ ms (lower- I_P shots with TS)

Conclusions – Future Work

LTX-ß

- NBI operation: improved beam divergence
 - Power supply renovation planned
 - Should also increase beam duration
- Plasma operation: higher I_P , reduced f_s , longer discharge
 - OH capacitor bank upgrade planned to double C_{OH}
- Diagnostics: density and temperature profiles
 - Thomson scattering adding HFS chords
 - T_e and v_{φ} profiles from CHERS (requires higher T_e)

Thank You

NSTX-U Physics Meeting, July 13th 2020

THE UNIVERSITY

MADISON

- [1] On Lithium walls: S.I. Krasheninnikov 2003 PoP
- [2] Flat T_e in LTX: D.P. Boyle 2017 *PRL*
- [3] Lithium PFCs in LTX: R. Majeski 2017 PoP
- [4] Magnetics in LTX environment: P.E. Hughes 2018 RSI
- [5] Plasma rotation under *J*_r: C.S. Chang 1999 *NF*
- [6] Momentum transport: J.E. Rice 2008 J. Phys.: Conf. Ser.

Extra Slides: Magnetics and lithium

- Lithium damages magnetics
 - Flows to coat surfaces
 - Infiltrates ceramics
 - Shorts windings
 - Corrodes copper wire
- Damaged past LTX sensors
 - Three in-shell poloidal arrays
 - ~2/3 of shell-edge poloidal array

Extra Slides: Mirnov analysis

- Equilibrium subtraction
 - 1) n = 0 component
 - 2) σ =167µs Gaussian-smoothed local signal
- Biorthogonal decomposition (SVD)
 - Normalize each signal $\bar{S}_i = S_i / \sigma_{S_i}$
 - SVD yields $\hat{U} \cdot \hat{\Sigma} \cdot \hat{V}^* = \hat{S}$
 - Spatial (U) and temporal (V) modes
 - BD mode = 2 matched SVD modes
 - Correlated sine&cosine = rotating cosine
- Track phases for frequency

Extra Slides: Mirnov analysis

- Equilibrium subtraction
 - 1) n = 0 component
 - 2) σ =167µs Gaussian-smoothed local signal
- Biorthogonal decomposition (SVD)
 - Normalize each signal $\bar{S}_i = S_i / \sigma_{S_i}$
 - SVD yields $\hat{U} \cdot \hat{\Sigma} \cdot \hat{V}^* = \hat{S}$
 - Spatial (U) and temporal (V) modes
 - BD mode = 2 matched SVD modes
 - Correlated sine&cosine = rotating cosine
- Track phases for frequency

Extra Slides: Beam parameters

- Beam sourced by arc chamber
 - Gas feed at anode & cathode
 - Provides ions and electrons to grids
 - Biased relative to accel grid
- Accel grid at V_{beam}
 - Also electron decel grid & ground grid
- Perveance/divergence relationship
 - Fast variation complicates measurement
 - Nominal perveance $\sim 15 \mu A/V^{3/2}$

Extra Slides: Beam profile

- Beam dump is far past beam waist
 - Small fractional solid angle
 - Shells above/below dump plate

Extra Slides: 3Dorb vs TRANSP

- Good agreement at low plasma current
- TRANSP results suspect
 - Equilibrium differences under investigation
 - Close to 3Dorb if ions are counted lost at LCFS
- Discrepancy to be resolved/understood for upcoming paper

Extra Slides: Poloidal flow damping

- Magnetic pumping can be conductive or viscous
- In target discharges, modestly noncollisional: $\tau_{ii} \approx 2 \times (q_a R_0) / v_{th}^i$
 - Implies intermediate damping timescale
 - $\tau_d^{cond} \sim \tau_{ii} \approx 90\,\mathrm{ms}$
 - $\tau_{d}^{visc} \sim (q_{a}R_{0}/v_{th}^{i})^{2}/\tau_{ii} \approx 20\,\mathrm{ms}$
- Damping fast compared to beam: $\tau_d^{cond} \sim \tau_d^{visc} \ll \tau_{beam}$
 - Suggests poloidal motion is saturated
 - Measured acceleration dominantly toroidal

Extra Slides: Analytic approximations

LTX-B

- Beam width modeled as multiple rays
- Local deposition w_{dep} along ray scaled to ray-integrated n_e
 - Re-scaled to central ray-integrated density and shinethru

-
$$dW_{dep} \approx \frac{n_e(r) f_s^0 A_{ray} ds}{\int n_e^0 ds}$$
, $r \equiv r(s)$

- Integrated over all rays
 - Momentum deposition yields NBI torque
 - Charge deposition yields JxB torque
- Also yields weighted $r_{dep} \equiv \int Q(r) dr / Q_{total}$
- $V_{j} \equiv V_{plasma} (1 r_{dep}^2 / a^2)$