

Turbulent transport driven by kinetic ballooning modes in the inner core of JET hybrid H-modes

N. Kumar ^{1, 2}

Y. Camenen¹, A. Loarte², C. Bourdelle ³, S. Benkadda¹, A. Polevoi²

¹ PIIM, Aix Marseille University ² ITER Organization ³ CEA, IRFM

NSTX-U / Magnetic Fusion Science Meeting : August 10, 2020

.....

Personal details

- ➢ Bachelor of Science Honours (B.Sc. (H)) in Physics → University of Delhi, India, 2013
- Master of Technology (M.Tech) in Nuclear Science and Technology

 Department of Physics and Astrophysics, University of Delhi, India, 2016
- PhD in Plasma Physics Aix-Marseille University/ITER Organization, France, Dec 2017-Present
 - Thesis Title: Analysis of Energy and Particle Transport in the Central part of ITER Plasmas
 - Thesis Supervisors: Yann Camenen, Alberto Loarte, Clarisse Bourdelle,
 Sadruddin Benkadda
- **Research Interests:** Plasma modeling and simulations, turbulence transport

Outline

Background and motivation

- Tungsten (W) accumulation issue in ITER
- Transport of W -> need to predict n and T in the inner core

Investigation of turbulent transport using gyrokinetic code GKW

Linear analysis in the inner core of JET plasmas

Non-linear simulations the inner core of JET plasmas

- Test of quasilinear approximation in the inner core of JET plasmas
- Summary

ITER divertor and tungsten (W) accumulation issue

- > Large heat loads on the walls and divertor (~ < 10 MW/m^2)
- Large radiative power losses from the plasma
- W develops very peaked core density profiles in some conditions (JET, ASDEX Upgrade)
- Will there be W accumulation in ITER?

Transport of W Impurity

> 1D Transport equation: Continuity equation

$$\frac{\partial n_w}{\partial t} + \nabla \cdot \Gamma_w = S_w$$

> W particle fluxes: Neoclassical + Turbulent

• $\Gamma_W^{\rho} = \Gamma_{NEO} + \Gamma_{TURB}$

$$= -(D_{NEO} + D_{TURB})\nabla n_w + (V_{NEO} + V_{TUR}) n_w$$

$$\propto Zn_W \left(\frac{\nabla n_i}{n_i} - 1/2 \frac{\nabla T_i}{T_i}\right)$$

- Turbulent diffusion depends on main ion density and temperature profiles
- > To predict $n_w(\rho)$ for $\rho < 0.3$, one needs to know main ion profiles $\frac{\nabla n_i}{n_i}$ and $\frac{\nabla T_i}{T_i}$

To predict n and T in the inner core

- > To predict n and T in the inner core \rightarrow need to know turbulent fluxes
- ➤ GKW → local gyro kinetic flux tube code → to simulate micro instabilities and turbulence in tokamak plasmas
- Need to validate transport models and quasilinear approximation in the inner core
 - Perform linear simulations
 - Compute quasi-linear fluxes from these simulations
 - Perform non-linear simulations
 - Compare the non-linear fluxes to quasi-linear fluxes
 - Compare the non-linear fluxes to experimental values

Outline

Tungsten (W) accumulation issue in ITER

- Issues with W
- Transport of W -> need to predict n and T in the inner core

Investigation of turbulent transport using gyrokinetic code GKW

Linear analysis in inner core of JET plasma

Non-linear simulations

- Test of quasilinear approximation in the inner core of JET plasmas
- Summary

Input Profiles

- Target shot: JET hybrid #75225 with no sawteeth (C wall) [Citrin PPCF 2015, Moradi NF 2014]
- Simulations include: actual magnetic equilibrium (Miller), collisions, rotation, EM fluctuations (A_{//} and B_{//}), and Carbon impurities

Normalized input parameters at various locations

♦ Nominal value of s increased from 0.01 to 0.05 at $\rho = 0.15$

ρ	$\frac{R}{L_{Ti}}$	$\frac{R}{L_{Te}}$	$\frac{R}{L_{Tf}}$	$\frac{T_e}{T_i}$	$\frac{T_{\rm f}}{T_{i}}$	$\frac{R}{L_{nC}}$	$\frac{R}{L_{ne}}$	$\frac{R}{L_{nf}}$	$rac{n_c}{n_e}$	$\frac{n_f}{n_e}$	β _{ref} [%]	β́	ŝ	u	u	v x 10 ⁻
0.15	4.2	1.9	1.8	0.69	5.6	-0.70	1.5	0.80	0.01	0.12	4.6	-0.37	0.05	0.31	0.59	1.5
0.20	5.5	2.7	-0.6	0.72	6.1	-1.13	1.9	-0.88	0.01	0.12	3.8	-0.48	0.02	0.32	0.80	1.6
0.25	6.6	3.3	2.4	0.76	6.6	-1.45	2.3	1.84	0.01	0.13	3.3	-0.57	0.05	0.32	0.99	1.7
0.33	7.7	4.1	9.6	0.84	6.1	-1.51	2.7	8.97	0.01	0.10	2.6	-0.66	0.21	0.32	1.31	1.9
0.40	7.9	4.5	10.7	0.91	7.8	-0.87	2.9	10.2	0.02	0.07	1.9	-0.64	0.49	0.31	1.57	2.2
0.50	6.3	5.2	4.4	1.04	4.6	2.70	3.2	3.41	0.02	0.06	1.3	-0.50	0.98	0.29	1.88	2.7
0.60	5.9	5.5	9.6	1.05	4.6	4.41	3.3	7.96	0.02	0.06	1.0	-0.37	1.42	0.24	0.24	3.4

Impact of fast ions

- Kinetic fast-ions from NBI with Maxwellian distribution function
- Impact of fast ion population by performing three set of simulations
 - > 1) kinetic fast ions and fast ion magnetic equilibrium pressure
 - > 2) without kinetic fast ions and magnetic equilibrium include fast ion pressure
 - > 3) without kinetic fast ions and without fast ion magnetic equilibrium pressure

Linear Simulations

Aix*Marseille

Growth rate and frequency at three different radial locations

11

1.5

1.5

ρ=0.15

. 12

Conclusion:

- Growth rate significantly reduces when kinetic fast ions included.
- \blacktriangleright Effect is independent of modification of magnetic equilibrium by fast ion pressure at $\rho = 0.15$
- Most unstable Kinetic ballooning mode (KBM) in inner core, propagating in diamagnetic drift direction at $\rho = 0.15^*$

* [Nkumar et al, submitted to NF 2020]

- Next step: focus only at $\rho = 0.15$. Neglecting impact of fast ions,
 - All linear simulations performed without fast ions as kinetic species and with fast ions pressure in magnetic equilibrium.

Parallel mode structure of potential ϕ and A_{\parallel} at $\rho = 0.15$

Conclusion:

- > Mode structure for both electrostatic potential (ϕ) and magnetic potential (A_{II}) very unusual
- Mode structure extremely elongated along the field lines (10-50 poloidal turns at low $k_{\theta}\rho_i$)

............

Growth rate as function of R/Lpi

Conclusion:

Growth rate curves are almost same for both the cases, indicates modes driven by pressure gradient.

Plasma beta and magnetic shear scans at ρ=0.15

Conclusion:

> High plasma beta and low magnetic shear responsible for destabilization of KBMs in inner core

.

Normalized linear heat and particle fluxes

$$Q_{s,E\times B}^{N} = \frac{Q_{s,E\times B}}{\mathcal{A}_{L}^{2}} \qquad \qquad \mathcal{A}_{L}(t) = \sqrt{\int \left[|\phi|^{2} + |A_{\parallel}|^{2} + |B_{\parallel}|^{2}\right] \mathrm{d}s / \int \mathrm{d}s}$$

At low $k_{\theta}\rho_i = 0.1$, significant magnetic flutter contribution to electron heat flux

16

Time trace of heat and particle flux at beta=4.6%

Conclusion:

- \Box Ion heat and particle flux dominated by $E \times B$ contribution, consistently with linear fluxes ratio
- Significant contribution from magnetic flutter to electron heat flux with opposite sign

Aix*Marseille

Nonlinear Simulations

Non-linear heat and particle fluxes in SI unit

$$Q_{N,s} = \frac{Q_s^r}{n_s T_s \rho_*^2 v_{thi}} \quad \Gamma_{N,s} = \frac{\Gamma_s^r}{n_s \rho_*^2 v_{thi}} \qquad \rho_*^2 = \rho_i / R_{ref} = 0.0033$$

18

Conclusion:

□ Heat and particle fluxes increases with beta due to destabilization of KBM consistently with linear values

Nonlinear Simulations

$k_{\theta}\rho_i$ spectrum of $|\phi|^2$, $|A_{\parallel}|^2$ and $|B_{\parallel}|^2$ for different beta

Conclusion:

Aix+Marseille

 \square $|A_{\parallel}|^2$ values much lower than $|\phi|^2$ but have similar shape

19

Outline

Tungsten (W) accumulation issue in ITER

Issues with W

Transport of W -> need to predict n and T in the inner core

Investigation of turbulent transport using gyrokinetic code GKW

Linear analysis in inner core of JET plasma

Non-linear simulations

- Test of quasilinear approximation in the inner core of JET plasmas
- Summary

Test of Various QL rules in the inner core

Mixing length model [1]:

$$W1 = \mathcal{A}_{QL}^2 = C1 \frac{\gamma}{\langle k_{\perp}^2 \rangle}$$

Qualikiz Model [2]: Saturated mode amplitude

П

г

$$W_{n} = C_{n} S_{k} \max \left[\frac{\gamma}{\langle k_{\perp}^{2} \rangle} \right] \qquad k_{\theta} \rho_{i}^{max} \text{ wave vector at } \max(\frac{\gamma}{k_{\perp}^{2}})$$

$$S_{k} = \left(\frac{k_{\theta} \rho_{i}}{k_{\theta} \rho_{i}^{max}} \right)^{x_{n}} \qquad \text{for} \qquad k_{\theta} \rho_{i} < k_{\theta} \rho_{i}^{max} \qquad W2 \text{ with } \mathbf{x_{2}} = \mathbf{1}$$

$$S_{k} = \left(\frac{k_{\theta} \rho_{i}}{k_{\theta} \rho_{i}^{max}} \right)^{-3} \qquad \text{for} \qquad k_{\theta} \rho_{i} > k_{\theta} \rho_{i}^{max} \qquad W3 \text{ with } \mathbf{x_{3}} = \mathbf{2}$$

[1] T. Dannert et al, PoP 12 (072309), 2005

QL fluxes computed as:

$$Q_{s,E\times B}^{QL} = \sum_{k_r,k_\theta} Q_{s,E\times B}^N \mathcal{A}_{QL}^2$$

$$Q^{QL}_{s,A_{\parallel}} = \sum_{k_r,k_{\zeta}} Q^N_{s,A_{\parallel}} \mathcal{A}^2_{QL}$$

[2] C. Bourdelle, et al, PoP 14 (112501), 2007

Comparison of Ø spectra for non-linear and various quasi-linear weights

QL spectra normalized to maximum of non-linear spectra

Conclusion:

- > Standard mixing length model not capture the finite amplitude of fields for $k_{\theta}\rho_i < 0.3$
- > Qualikiz-like model perform better to this respect, especially for W3

22

Comparison of non-linear and quasi-linear heat fluxes with beta for $E \times B$ part

$$Q_{s,A_{\parallel}}^{QL} = \sum_{k_r,k_{\zeta}} Q_{s,A_{\parallel}}^N \mathcal{A}_{QL}^2$$

C1=12.4 ; C2=14.1; C3=14.4

Comparison of non-linear and quasi-linear electron magnetic flutter heat fluxes with beta

$$A_{\parallel}^{\text{ratio}} = \frac{\mathcal{A}_{L}(k_{\theta}\rho_{i})}{\mathcal{A}_{A_{\parallel},L}(k_{\theta}\rho_{i})} \frac{\mathcal{A}_{A_{\parallel},L}(k_{\theta}\rho_{i}^{max})}{\mathcal{A}_{L}(k_{\theta}\rho_{i}^{max})}$$
$$Q_{s,A_{\parallel}}^{QL} = \sum_{k_{r},k_{\theta}} Q_{s,A_{\parallel}}^{N} \mathcal{A}_{QL}^{2} A_{\parallel}^{\text{ratio}}$$

Vith A^{ratio}

.....

Summary

- > Turbulent transport level non-negligible for r/a < 0.3 provided \hat{s} sufficiently low
- ➢ Non-negligible turbulence in inner core mitigate neoclassical inward pinch of W → relevant for ITER
- KBMs instability is also present in the inner core of ITER plasma*
- > Low $k_{\theta}\rho_i$ regions that are linearly stable can have a finite level of fluctuations in the non-linear regime
- Their excitation in the non-linear regime generates significant contribution to the magnetic flutter electron heat flux
- Standard quasilinear models fails to capture this part because ratio of $|A_{||}|$ to $|\emptyset|$ at low $k_{\theta}\rho_i$ different in linear and non-linear simulations
- By including A^{ratio} magnetic flutter part capture better. Still further improvement required*

* [N. kumar et al, submitted to NF 2020]

25

Ongoing work

- ➤ Extend study to other ITER high Q-scenario, such as steady state Q=5 → predict impact of core profile flattening on fusion gain
- Compare turbulent heat and particle fluxes with neoclassical fluxes to predict W accumulation in inner core of ITER
- > Est. Thesis submission December 2020

Publications and conferences

Publications

Manuscript submitted: N. Kumar, Y. Camenen, S. Benkadda, C. Bourdelle, A. Loarte, A.R. Polevoi, F. Widmer, and JET contributors, "Turbulent transport driven by kinetic ballooning modes in the inner core of JET hybrid H-modes", Nucl. Fusion.

Conference Poster Presentations

- Poster presentation in the « 46th European Physical Society Conference on Plasma Physics (EPS 2019)», Milan, Italy, from July 8 to 12, 2019
- Abstract accepted for regular poster presentation, "28th IAEA Fusion Energy Conference (FEC 2021)", 10-15 May 2021, Nice, France (shifted to next year due to COVID-19)

Poster Presentations

- Presented a poster in the Culham Plasma Physics Summer School, the UK from July 15 to 27, 2018.
- > Poster in the ITER FuseNet PhD event 2018, France, from November 6 to 9, 2018.

.....

Thank you. Any questions?

N. Kumar^{1,2}

neerajkumar2663@gmail.com

Y. Camenen^{1,}, A. Loarte², C. Bourdelle³, S. Benkadda¹, A. Polevoi²

¹ PIIM Laboratory, Aix-Marseille University, Marseille, France
 ² ITER, Organization, CEA, Saint-Paul-lez-Durance, France
 ³ IRFM, CEA, Cadarache, Saint-Paul-lez-Durance, France

Acknowledgements:

PIIM laboratory, Aix-Marseille University and Confinement & Modelling Section, ITER Organization