H.E.A.T. UPDATE

T. Looby, M. Reinke, A. Wingen 08/31/2020

CAK RIDGE National Laboratory

01

Demonstration Introduction to HEAT capabilities

NSTX-U PFC Analysis

 Determination of NSTX-U
 operational space w/ respect to PFCs

02

HEAT Overview

HEAT architecture and module descriptions

03

04

HEAT Roadmap

Upcoming modules

Demonstration 01

NSTX-U graphite Plasma Facing Components (PFCs) are thermally limited at 1600°C

Graphite has a sublimation limit of ~ <u>1600°C</u>

NSTX-U Recovery PFC working group understood this limit, but lacked the tools to check physics scenarios against PFC sublimation

PFC temperature can constrain physics scenarios

8 MW/m₂ heat flux applied to SGLR6510 surface for 5s pushes material past sublimation limit

Result above from PFC WG Memo 016 pg. 4: https://nstx.pppl.gov/DragNDrop/Working_Groups/PFCR/memos/PFCR-MEMO-016-00.pdf 4

First, an example

from recent events at

NSTX-U...

5

OutBoard Divertor (OBD) tile has complicated 3D geometry and is aligned to conical plane

Stark contrasts in heat footprint can arise from discharges with identical plasmas

What is the source of the difference in heat loads between these two cases?

Change of perspective to find the difference...

Small changes to PFC geometry can have a significant impact on heat flux footprint

Fish-scales create magnetic shadows and 'reassign' power to new locations

No Fish-scale

Case 1 uses fish scale to redeposit power more uniformly

Changing heat flux footprints on PFCs has thermal consequences...

Results shown for P_{SOL, LowerOuter}

_r = 4 MW using PFC WG Memo 010 Case 1.1 (g116313.00850.NfHz0+_0)

Time varying output simulated with HEAT Diverted Example: 204118@300-1000ms

30° Section of Lower Divertor

HEAT Overview

HEAT couples disparate computational modules into a single integrated (open source) python suite

HEAT has a full-blown parametric CAD program built into the CAD python module

FreeCAD is an open source parametricCAD modeler.https://www.freecadweb.org/

FreeCAD

HEAT's python wrapper uses FreeCAD for:

- Interacting with STP files
- Filtering large CAD files by part #
- Meshing each PFC (STL)
- Coordinate permutations
- Digging through assemblies

HEAT converts parametric surfaces into STL meshes in the CAD module

Here, maximum mesh edge length of 3mm

A point cloud of points is generated using each mesh center for calculations

Heat flux is calculated at divertor surface points incorporating flux expansion and incident angle

Scaling coefficient

 q_{div}

Divertor

heat flux

 $\hat{q}_{||}(\psi)$

User defined heat flux profile (here as function of poloidal flux) Flux expansion effect

 B_{div}

٠

 \mathbf{D}_{omp}

 $(\hat{b}\cdot\hat{n})$

Field line incident angle effect

Magnetic field is calculated at each point

Subset of B field vectors

 $|q_{div}=q_{||0}\cdot \hat{q}_{||}(\psi)\cdot rac{B_{div}}{B_{omp}} |\cdot (\hat{b}\cdot \hat{n})|$

Incident angle effect is calculated at each point

Poloidal flux (ψ) is calculated at each point, then q_{||} calculated from user defined profile

Heat flux is calculated across divertor surface by combining all terms

Easy to identify shadowed points are determined using backface culling

Backface culling (BC) is a technique from computer graphics and rendering

BC used in HEAT to identify potential loaded faces for further checking

ShadowMask ShadowMask 0.0e+00 1.0e+00

A. Wingen's MAFOT code traces field lines from mesh points to identify shadowed faces

upstream tile downstream tile

Shadowed points identified by checking for intersections with other mesh elements

A. Wingen's (ORNL) MAFOT code can also be used to illustrate heat loading in toroidal gaps

A. Wingen's (ORNL) MAFOT code can also be used to illustrate heat loading in toroidal gaps

HEAT uses openFOAM for Finite Volume Methods (FVM) and Computational Fluid Dynamics (CFD)

openFOAM is an open source package for:

- Continuum Mechanics
- Finite Volume Methods
- Developing PDE solvers
- Creating FV meshes
 https://www.openfoam.com/releases/openfoam-v1712/

HEAT uses openFOAM to:

- Create volume meshes from STLs
- Map heat flux to surfaces
- Solve heat diffusion equation
- Use material dependent T properties

ParaVIEW is under the hood of HEAT's powerful visualization algorithms

ParaVIEW is an open source package (originally from LANL) for:

- Visualization
- Data probing, Interaction, Virtual Reality
- Rendering movies
- Parallel / cluster rendering (terascale) https://www.paraview.org/

HEAT uses ParaView to:

- Visualize all data
- Serve HTML clients via iFrames
- Render movies

Global water surface temp by LANL

HEAT is accessible to anyone on the LAN via it's HTML5 GUI built with DASH / plotly

HEAT has a wide domain of tokamak physics modules in the requirements

Completed:

- Time varying heat fluxes
- Axisymmetric
- Nonaxisymmetric
- 3D PFCs
- Optical Approximation
- Sweeping
- Limiters
- Attached Divertor

In Progress:

- 3D Fields
- Power Sharing with

Not Yet Completed:

- Gyro Orbits
- Detached Divertor
- ELMs
- Disruptions*
- Energetic particle losses*
- * = outside PhD scope

NSTX-U PFC Analysis

Memo 010 Case 1.1 is a static discharge with desired pulse length of 5s

 $P_{inj} = 10.0 \text{ MW}$ $f_{rad} = 0.3$ $B_T = 1T$ $I_p = 2MA$ ∠ @ peak = 0.86°

Profile: Gaussian Spreading λ_q = 1.903mm (Eich) S = 0.914 mm (Makowski)

Max Mesh Edge Length: 3 mm

Memo 010 Case 1.1 can <u>NOT</u> be run for the 5s desired steady state duration!

33

Strike point sweep frequency (f_{sweep}) can be used to reduce T_{peak} on <u>Outboard Divertor (OBD)</u>

Strike point sweep frequency (f_{sweep}) can be used to reduce T_{peak} on <u>Inboard Divertor Horizontal (IBDH)</u>

36

HEAT has a built in gFile interpolator / stitcher that can be used to generate strike point sweeps

Originally only 5 geqdsk steps

HEAT tool interpolates geqdsk to 50 steps

Memo 008 TSGTT 204a (g204062.01250_TT_2-04_<#>), P_{ini} = 2MW, f_{rad} = 0.3, B_T= 0.75 T, I_p = 800kA, LSN, Res_{HF} = 2.5mm

Strike point sweep frequency (f_{sweep}) can be used to reduce T_{peak} on Center Stack Angled Surface (CSAS)

Memo 008 TSGTT 204a (g204062.01250_TT_2-04_<#>), P_{ini} = 2MW, f_{rad} = 0.3, B_T= 0.75 T, I_p = 800kA, LSN, Res_{HE} = 2.5mm

Time varying output simulated with HEAT Limited Example: 204118@50-250ms

P_{soL} = 3.0 MW

Profile Type: Limiter λq_n=3mm λq_F=5mm

Max Mesh Edge Length: 5 mm

Looking for more cases or discharges

to run through HEAT

Cases that demonstrate: Was the 'intent' of the PFC requirements captured by the tiles?

41

HEAI Roadmap

ROAD MAP (NEAR TERM)

Version 1.0 pushed to github + Aug 2020

O

Detachment physics module complete

May 2021

Nov 2020

Ion orbits physics module complete

3D Plasmas, M3DC1, ELMs, module complete

Jan 2021

J. P. Gunn et al., "Surface heat loads on the ITER divertor vertical targets," Nucl. Fusion, vol. 57, no. 4, p. 046025, Apr. 2017.

44

Next module under development is ion gyro orbits

- Typically we use the 'optical' approximation to describe heat loads
 - Heat flows along field lines
- The truth is, particles carry heat and they precess about the magnetic field lines
- Sometimes particles can 'dip' into a gap and load shadowed faces because of their gyro-orbits
- 3D PFC geometry causes 3D heat loading effects because of cyclotron resonance
- <u>High field machines see narrower edge loading!</u>

$$r_g = \frac{mv_\perp}{|q|B}$$

Questions?

If you think HEAT could benefit your research, reach out! We are seeking collaborators and contributors.

tlooby@vols.utk.edu

https://github.com/plasmapotential/HEAT

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.