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Introduction:   Background

u Deep Learning – An increasingly important & prominent Artificial 
Intelligence (AI)-enabled methodology for the analysis and interpretation 
of challenging spatio-temporal data in modern scientific areas. 

u Present Context -- Application of deep learning models for addressing 
disruption prediction & control in tokamaks is a high-profile exemplar 
problem. 



Introduction:  FRNN 
[“Fusion Recurrent Neural Network” (RNN)] Software  

u Disruptions can halt power production and damage 
key components in tokamaks.

u [J. Kates-Harbeck, A. Svyatkovskiy and W. Tang, 
NATURE (April, 2019)] introduced method based on 
deep learning for forecasting disruptions in DIII-D 
and JET plasmas.



Introduction:  FRNN

u Deep learning models first to demonstrate efficient cross-machine 
predictive capabilities



Introduction:  FRNN

u D3-D Tokamak Shot #159,593:  Illustration of 
unique capability of the deep-learning model to 
use 1D information (black) to correctly predict 
the oncoming disruption. 



Model Architecture - Temporal Convolutional 
Neural Network (TCN)

u Schematic of TCN-based model
u Advantages:
v TCN directly fetches historical 

information through a time series 
(Note:  RNN can still lose distant 
information through operations on the 
cell state that carries long term 
memory )

v Easy model parallelism —
“feedforward” network does not 
incorporate gated functions or 
recurrent connections 

Dilated convolutions:
Temporal receptive field 
(k-1)*d



Model Architecture - Inputs

Signal description Numerical scale DIII-D Numerical scale JET
Plasma current 3.8 e-1 MA 5.03 e-1 MA
Plasma current target 3.9 e-1 MA Not available on JET
Plasma current error 3.1 e-2 MA Not available on JET
Plasma current direction 1.0 Not available on JET
Internal Inductance 2.02 e-1 1.51 e-1
Plasma density 1.19 e19 m-3 4.69 e19 m-3

Input power (beam for DIII-D) 1.85 e6 W 4.47 e6 W
Radiated power core 4.58 e2 W 4.05 e4 W
Radiated power edge 4.94 e2 W 2.72 e4 W
Stored energy 2.79 e5 J 1.2 e6 J
Locked mode amplitude 1.14 e-6 T 5.72 e-5 T
Safety factor q95 1.0 1.0
Normalized plasma pressure 6.91 e-3 Not available on JET
Input beam torque 1.47 Nm Not available on JET
Electron temperature profile 9.53 e-1 keV 1.53 keV
Electron density profile 1.47 e19 m-3 2.98 e19 m-3



Model Architecture - Outputs

u Output of the dilated convolutional layer 
blocks à final fully-connected layer à
disruption score 

u Disruptive shot: If disruption score is 
greater than (>) “alarm threshold” before the 
“warning time”àTP (true positive) result

u Clean shot: If the disruption score exceeds 
(>) the “alarm threshold” at any time à FP 
(false positive) result

u Results Summary:  ROC Curve:  
Changing the ‘alarm threshold’produces 
“receiver operating characteristic” results –
plotted as “AUROC” Area Under Receiver 
Operating Curve)



Model Architecture - Hyperparameters

Hyperparameter EXPLANATION REPRESENTATIVE VALUE 
𝜼 Learning rate 9.08 e-5
𝜸 Learning rate decay per epoch 0.99

Nbatch Training batch size
Twarning Warning time for target function, which becomes positive at Twarning 20

Target Type of target function ttd (function linear in time to 
disruption)

Nt Number of causal temporal convolutional layers 8

Ns Number of spatial convolutional layers 2
𝝀 Weighting factor for positive examples 16
Kt Size of temporal convolutional filters 11
Ks Size of spatial convolutional filters 7

NTstack Number of stacks of temporal convolutional blocks 2

ntf Number of temporal convolutional filters 60
nsf Number of spatial convolutional filters 20

Dropout Dropout probability 0.05



Results – AUROC (“Area Under Receiver Operating Curve”)

Single machine Cross Machine

Training (#shots) DIII-D (1702)            JET-CW(1956) DIII-D (2268) JET-CW(1956)

Validation (#shots) DIII-D (837)          JET-CW(962) DIII-D (1117) JET-CW(962)

Testing (#shots) DIII-D (846)     JET-ILW(1133) JET-ILW(1133) DIII-D(846)

Warning time 30ms  0.2s 1s 30 ms 30ms 30ms

FRNN 0D-LSTM       0.93       0.90 0 .72 0.95 0.81 0.76

FRNN 0D-TCN 0.93     0.90 0.74 0.95 0.91 0.73

FRNN 1D-LSTM 0.93  0.89 0.80 0.84

FRNN 1D-TCN 0.93 0.91 0.79 0.89



Results:  ROC for Single Experimental Facility (D3-D)

Comparison of ROC curves on the DIII-D training (left panel) and test (right panel) dataset with 0.2s 
warning time for the optimal FRNN 1D models, based on the TCN (blue) and LSTM (red) architectures. 
The solid dots indicate model performance at the optimal alarm threshold determined on the validation set.



Results:  Single Experimental Facility (DIII-D) Example

Example prediction on DIII-D shot # 
147206: The solid vertical red line shows the 
latest warning time (30ms before the 
disruption). Both models respond noticeably 
around the indicated disruption alarm time. 
Only the TCN based model correctly triggers 
the disruption alarm around 0.5 second 
before the actual disruption.



Results:  Cross-Device (DIII-D and JET) Example

Comparison of ROC curves on the DIII-D training (left panel) and JET test (right panel) dataset for the 
optimal FRNN 1D models, based on the TCN (blue) and LSTM (red) architectures. The solid dots indicate 
model performance at the optimal alarm threshold determined on the validation set.



Results:  Cross-Device Example

Example prediction on JET shot 
#83340.



Results:  Signal Importance Studies

TCN LSTM 

Each bar represents the test set AUC values achieved by a model 
trained on the single labeled signal.



Computational Performance:
— strong scaling

TCN 
strong scaling 



Computational Performance:
— models comparison of “time per epoch”

Time per epoch (i.e., the time required to 
complete one pass over the entire training 
dataset) during training:
-- 4 Tesla V100 processors used for FRNN-0D and 
FRNN-1D, for LSTM (brown), and TCN (green) 
architectures, respectively.  
-- Lower values correspond to better 
computational performance. 
-- The 4 models here correspond to the best 
performing ones from  the studies of D3-D single 
machine disruption predictions with 30ms warning 
time.



Ongoing & Future Development of the FRNN 
Software Suite 

• Keras API

• LSTM based models

• 0D+1D data

• Disruption score

FRNN [NATURE (April, 2019)]

AI/Deep Learning Model

Input

Output

• Keras API / Pytorch API

• LSTM / TCN / TTLSTM based models

• 0D+1D + 2D data

• Disruption score + real time sensitivity score

• Physics-based signals

FRNN [2020]

AI/Deep Learning Model

Input

Output



Summary

u We have trained a fully convolutional spatio-temporal deep-learning model for the exemplar 
application of tokamak disruption predictions.

u In addition to the LSTM capability for addressing temporal data information in FRNN,  we have 
now implemented and applied the “temporal convolutional neural network (TCN)” architecture 
to comprehensively process the time-dependent input signals.

u This advance allows convolution operations to carry the majority of the computational load of 
training, thus enabling a reduction in training time, and further optimizing the effective use of 
high-performance computing (HPC) resources.

u The TCN based architecture achieves equal or better predictive performance when compared 
with the LSTM architecture for a large, representative fusion database.

u A new deep learning predictive platform is introduced here with flexible architecture selection 
options, capable of being tuned for an increasing variety of challenging tasks.


