

NSTX-U Magnetic Fusion Science Meeting

Princeton Plasma Physics Laboratory October 19. 2020

First systematic theory of ohmic breakdown in a tokamak: a turbulent ExB mixing avalanche

<u>Min-Gu Yoo</u>

Yong-Su Na², Jeongwon Lee³, Young-Gi Kim², Jayhyun Kim³

Princeton Plasma Physics Laboratory, Princeton, U.S.A.
 Seoul National University, Seoul, South Korea
 National Fusion Research Institute, Daejeon, South Korea

email: myoo@pppl.gov

Contents

1. Introduction

2. Previous works

- Townsend avalanche theory
- Field quality analyses of external EM structure

3. Mysterious experimental results

- Slow plasma growth rate
- Homogeneous plasma structure along B

4. Roles of the self-electric fields

- Ohmic heating power drop as a parallel plasma response
- Dominant ExB transports as a perpendicular plasma responses
- 5. Topological analysis of plasma dynamics in the complex EM structure
 - New comprehensive understanding of X-point topology
 - New guideline for scenario design strategy

6. Summary

What is Ohmic breakdown?

What is ohmic breakdown?

- A major method to produce initial plasma in the device
- Electrical breakdown of neutral gas by toroidal electric fields

Distinct characteristics of Ohmic breakdown

✓ Open magnetic field lines

- External magnetic fields are dominant
- Plasma current is negligible
- ✓ Very low pitch angle
 - $B_{RZ}/B_{tor} \sim 10^{-3}$
 - Long connection lengths (> 1000 m)
- ✓ Toroidal electric fields
 - $E_{tor} \leq 1 V/m$
 - Strongest during normal tokamak operation

Underlying physical mechanisms have been obscured for decades

Time-varying complex electromagnetic fields

• (time-varying) CS currents + PF currents + eddy currents

Deep understanding of Ohmic breakdown physics is essential to design robust and optimized breakdown scenarios

Lack of experimental observations

20 ms

40 ms

Experimental observations of ohmic breakdown phenomena are very limited

Previous physical concept based on Townsend theory

1. Parallel electron transport (v_e^{\parallel}) is dominant

2. Growth rate is determined by Townsend theory

$$n(x_{\parallel}) = n_0 \exp(\alpha x_{\parallel})$$
$$\alpha = Ap \exp(-Bp/E_{\parallel})$$
7

[1] Townsend, J. S. Electricity in Gases. (Рипол Классик, 1915).

Field quality analyses of external EM structure

Based on the Townsend avalanche theory...

- Electron avalanche physics are determined by external fields only
- Detail avalanche physics are out of interest
- Evaluations of complex external electromagnetic fields are important

Field quality analysis

All of these considerations are well known and we find that

there are no new physics issues related to achieving plasma initiation in an ITER class tokamak.

[ITER Physics Basis (1999)]

[4] R. Yoshino, et al., Plasma Phys. Control. Fusion **39** 205 (1997)

[5] Tanga, A., in Tokamak Start-up (ed. U. Knoepfel), Plenum Press, New York 159 (1986)

[6] Lazarus E.A., et al., Nucl. Fusion **38** 1083 (1998)

[7] G.L. Jackson, et al., POP 17 056116 (2010)

Mystery 1: Very slow avalanche growth rates in the experiments

- For 950 shots of KSTAR ohmic breakdown plasma
 Experimental growth rate
 - Experimental growth rate

$$\frac{1}{n_e}\frac{dn_e}{dt} \approx \frac{1}{I_p}\frac{dI_p}{dt}$$

- Townsend avalanche

$$\frac{1}{n_e}\frac{dn_e}{dt} = \left(\alpha - \frac{1}{L_{\text{eff}}}\right)v_{de} \qquad \alpha = 510 \ p \exp\left(-\frac{1.25 \times 10^4 p}{E}\right)$$
$$v_{de} = 43(E/p)$$

Experimental growth rates are 10-100 times slower than Townsend's predictions

Mystery 2: Homogeneous plasma structure along B field line

Localized & asymmetric structure

(Exponential density profile along \vec{B})

Visible camera from Experiment

Elongated & symmetric structure (Homogeneous density along \vec{B})

One-way parallel electron transport (Townsend theory) cannot make homogeneous structure along B

What is the missing physics?

- Townsend theory is not valid for ohmic breakdown
 - High plasma potential build-up was observed 30 years ago
 - Townsend theory cannot explain spatial-temporal plasma evolution
- The missing physics is the "plasma response"
 - Townsend theory ignored any plasma response
 - Plasma responses play crucial roles in many discharges such as streamer and lightening
- A systematic theory considering plasma response in the complex EM topology is required to understand ohmic breakdown physics

Research Scope

Approaches

- Toroidally symmetric plasma response model
 - Provides a simple and clear understanding of the ohmic breakdown physics
- **BREAK** (Breakdown Realistic Evolution Analysis in tokamaK)

M.-G. Yoo, CPC, 221 (2017) 143–159

- Multi-dimensional particle simulation based on the first-principle
- Realistic plasma evolution in a complex electromagnetic topology

Discovery of fundamental physical mechanism of the ohmic breakdown

M.-G. Yoo, Nat. Commun. (2018) 9:3523

Townsend avalanche

Turbulent ExB mixing avalanche

Plasma response

Toroidally symmetric plasma response

Self-electric fields play significant roles in the ohmic breakdown regarding parallel and perpendicular dynamics

Toroidally symmetric plasma response

Debye shielding via n=0 poloidal electric fields (E_{self}^{RZ})

Derivation of critical plasma densities ($n_{ m crit,\parallel}$ and $n_{ m crit,\perp}$)

Self-electric field produced by charge separation within Debye length scale

nkT_e

- 7

$$E_{\text{self}}^{2} \approx \sqrt{\frac{\epsilon_{0}}{\epsilon_{0}}} \gamma$$

 $\gamma \approx \left(\frac{2}{\pi}\right) \tan^{-1}\left(\frac{w}{L}\right) \qquad \begin{array}{l} \gamma \to 1 \text{ when } w \gg L \\ \gamma \to 0 \text{ when } w \ll L \end{array}$

Parallel critical density $n_{ ext{crit},\parallel}$

 $\pi Z_{\parallel} = \pi \phi_{\parallel}$

$$E_{\text{self}}^{-\gamma_{n}} \ge E_{\text{ext}}^{-\gamma_{n}}$$

$$\sqrt{\frac{nkT_{e}}{\epsilon_{0}}}\gamma\sin\theta_{B} \ge E_{\text{ext}}^{\phi,\parallel}\cos\theta_{B}$$

$$n \ge \left(\frac{\epsilon_{0}}{kT_{e}}\right)\cot^{2}\theta_{B}\left(E_{\text{ext}}^{\phi}\right)^{2}\left(\frac{1}{\gamma}\right)^{2} \equiv \boldsymbol{n}_{\text{crit,}\parallel}$$

Perpendicular critical density $n_{\text{crit},\perp}$

$$v_{\mathrm{E}\times B}^{RZ} \geq v_{\mathrm{th},e}^{RZ}$$

$$\sqrt{\frac{nkT_e}{\epsilon_0}}\gamma \frac{\cos \theta_B}{B} \ge \sqrt{\frac{kT_e}{m_e}} \sin \theta_B$$
$$n \ge \frac{\epsilon_0 B^2}{m_e} \tan^2 \theta_B \left(\frac{1}{\gamma}\right)^2 \equiv \mathbf{n_{crit, J}}$$

Parallel response: E_{\parallel} reduction

- Separation force $(E_{ext}^{\phi,\parallel})$ vs. Attracting force $(E_{self}^{RZ,\parallel})$ $E_{ext}^{\phi,\parallel} = E_{ext}^{\phi} \cos(\theta_B)$ $E_{self}^{RZ,\parallel} = -E_{self}^{RZ} \sin(\theta_B)$
- Equilibrium state in parallel direction

 $E_{\text{ext}}^{\phi,\parallel} = -E_{\text{self}}^{\text{RZ},\parallel} \qquad \Longrightarrow \qquad \boxed{E_{\text{self}}^{\text{RZ}}} = \left| E_{\text{ext}}^{\phi} \right| \cot(\theta_{\text{B}})$ (1000 V/m) (1 V/m)

• Cancellation of external electric fields

 $\boldsymbol{E}_{\text{tot}}^{\parallel} = \boldsymbol{E}_{\text{ext}}^{\phi,\parallel} + \boldsymbol{E}_{\text{self}}^{\text{RZ},\parallel} \approx 0$

- Parallel transport
- Heating power
- Electron temperature
- Avalanche growth rate 🛛 🐥

Key mechanism for slow plasma formation

Derivation of critical plasma densities ($n_{ m crit,\parallel}$ and $n_{ m crit,\perp}$)

- \succ Perpendicular critical density $n_{
 m crit,\perp}$
- ✓ ExB perpendicular transport is dominant transports in the RZ plane due to very low pitch angle (sin $\theta_B \sim 10^{-3}$)

$$v_{\text{E}\times B}^{RZ} \ge v_{\text{th},e}^{RZ}$$

$$\sqrt{\frac{nkT_e}{\epsilon_0}} \gamma \frac{\cos \theta_B}{B} \ge \sqrt{\frac{kT_e}{m_e}} \sin \theta_B$$

$$n \ge \frac{\epsilon_0 B^2}{m_e} \tan^2 \theta_B \left(\frac{1}{\gamma}\right)^2 \equiv \mathbf{n}_{crit,\perp}$$

17

Perpendicular response: dominant ExB transport

\checkmark Mean ExB across B_{RZ}

- → Induced by spatial-temporal average $\overline{E_{\text{self}}^{\text{RZ}}}$
- → Determine overall plasma flow and position

$$\left\langle \overline{\mathbf{E}_{\text{self}}^{RZ}} \right\rangle = \left| \mathbf{E}_{\text{ext}}^{\phi} \right| \cot \theta_B \left(-\widehat{\mathbf{E}}_{\text{ext}}^{\phi} \cdot \widehat{\mathbf{B}}_{\phi} \right) \widehat{\mathbf{B}}_{RZ}$$
$$\left\langle \overline{\mathbf{v}_{E \times B}^{RZ}} \right\rangle = \frac{\left\langle \overline{\mathbf{E}}_{\text{self}}^{RZ} \right\rangle \times \widehat{\mathbf{B}}_{\phi}}{B} = \frac{\left| \mathbf{E}_{\text{ext}}^{\phi} \right|}{\left| \mathbf{B}_{RZ} \right|} \cos \theta_B \left(\widehat{\mathbf{E}}_{\text{ext}}^{\phi} \times \widehat{\mathbf{B}}_{RZ} \right)$$

- \checkmark Turbulent ExB mixing along B_{RZ}
 - → ExB vortices at plasma edges are turbulent due to negligible viscosity
 - → Plasma rapidly diffuses along B_{RZ} by turbulent mixing

$$\nabla \times \mathbf{v}_{E \times B} \approx -\rho / (\varepsilon_0 B) \hat{\mathbf{b}}$$

Dominant transport mechanism in the RZ plane

when
$$n>n_{
m crit,\perp}\equiv \left(rac{\epsilon_0B^2}{m_e}
ight) an^2(m{ heta}_B)\left(rac{1}{\gamma}
ight)^2$$

Turbulent ExB mixing along B_{RZ} & mean ExB across B_{RZ}

×10¹²

Vortex

6

2

0

-2

ExB mixing avalanche mechanism

Parallel dynamics

- 1. Cancellation of $E_{\text{ext},\parallel}$
 - Slow avalanche growth (Mystery 1 solved)

Perpendicular dynamics $n > n_{c,\perp} \equiv \left(\frac{\epsilon_0 B^2}{m_e}\right) \tan^2(\theta_B) \left(\frac{1}{\gamma}\right)^2$

 $n > n_{c,\parallel} \equiv \left(\frac{\epsilon_0}{kT_c}\right) \cot^2(\theta_B) (E_{ext})^2 \left(\frac{1}{\nu}\right)^2$

- **2.** Mean ExB across B_{RZ}
 - → Determine plasma position
- 3. Turbulent ExB mixing along B_{RZ}
 - ➔ Homogeneous plasma density along B_{RZ} (Mystery 2 solved)
 - Dominant plasma loss term (Mystery 1 solved)

Development of particle simulation code

- To study the ohmic breakdown physics under a realistic complicated situation by considering the self-electric fields and kinetic effects consistently
- The ohmic breakdown phenomena span a broad range of spatio-temporal scales
 - $\Delta x \sim (10^{-6} 1) \text{ m}$, $\Delta t \sim (10^{-12} 10^{-2}) \text{ s}$
- BREAK (Breakdown Realistic Evolution Analysis in tokamaK)
 - Written in C/C++ language
 - 2D / 3D implicit electrostatic particle-in-cell simulation code
 - Direct implicit method with D1 damping scheme is adopted to calculate charged particle motion
 - 6 species (e, H₂⁺, H⁺, H₃⁺, H_{2(fast)}, H_(fast)) are considered
 - 26 collision reactions in the energy range of (0.01 1000) eV and plasma-wall interactions are treated by the MCC (Monte Carlo Collision) scheme
 - Coulomb collision is calculated by Nanbu's method
 - Self-electric fields produced by plasma space charge are calculated
 - Hybrid parallel computing method (MPI + OpenMP)

M.-G. Yoo, CPC, 221 (2017) 143–159

Simulation of the simple ohmic breakdown scenario

22

Without self-electric fields (Townsend avalanche)

Phase 1 : Townsend avalanche

✓ Fast growth rate

✓ Localized & up-down asymmetric structure due to parallel electron transport

Phase 2 : Turbulent ExB mixing avalanche

✓ Slower growth rate

Elongated plasma structure due to anomalous perpendicular transports

With self-electric fields (OD results)

26

KSTAR Simulation Design

KSTAR reference breakdown scenario

- Breakdown scenarios are designed by considering eddy currents as a ring model and ferromagnetic incoloy 908 material effect as a non-linear model [6].
- Magnetic field configurations varies with time (0 60 ms)
- Initial condition

$$n_{\text{gas}} = 4 \times 10^{17} \ m^{-3}$$

 $n_{e0} = n_{i0} = 10^6 \ m^{-3}$ $T_{e0} = T_{i0} = 0.03 \ \text{eV}$

• 2 different simulations

BREAK simulation of KSTAR ohmic breakdown

without E_{self} (Townsend avalanche)

- Monotonic exponential growth
- Electron Parallel transport

with E_{self} (Ohmic breakdown)

- Slowing down of growth rate
- Newly enhanced ExB transports

OD results of BREAK simulation

- Plasma T_e & n_e
 - Maintaining low Te (\sim 10 eV)
 - Drastic decrease of n_e growth rate
- Ohmic heating power drop
 - E_{self}^{\parallel} cancels out E_{ext}^{\parallel} (E_{tot}^{\parallel}) - Heating power is reduced

Transports

- $v_e \parallel$ is reduced
- Perpendicular transports by ExB
- Ion transport is greatly enhanced

$$(v_e \perp \approx v_{H_2^+} \perp) > v_e \parallel \gg v_{H_2^+} \parallel$$

Temporal evolution of plasmas

Turbulent plasma evolution during ohmic breakdown

t =0.0 ms

→ The plasma evolution during the ohmic breakdown is very turbulent

Fluctuating and mean Self-electric field

Turbulent ExB mixing and diffusion

Simulation results agree well with KSTAR experiments

✓ Drastic decrease of growth rate

✓ Homogeneous plasma structure along B_{RZ}

Strongly Inhomogeneous Plasma Evolution

- How to understand the strongly inhomogeneous plasma evolution in the complex EM topology?
- Is it possible to predict the overall plasma structures & behaviors?

Previous understanding of X-point topology

- Characteristics of X-point region
 - Infinitesimal pitch angle

 $|B_{RZ}|\approx 0,\;\theta_B\approx 0$

- Long connection length
 - $L_c \sim a_X |B_{tor}| / |B_{RZ}| \gg 1$
- Long confinement time

 $\tau_{\parallel} \sim L_c / v_{e,\parallel}$

Empiricial condition to determine plasma position

$$\left|\frac{E_{\phi}B_{\phi}}{B_{RZ}}\right| > 1000 \text{ V/m}$$

How does the self-electric field come into play regarding the X-point topology?

Potential structure around the X-point

700 0.8 600 500 0.4 LOW High 400 E_T 🛞 300 **B**_T 厳 **ExB** 100 Low 0 High -100 -0.6 -200 -0.8 -300 -1 1.2 1.6 1.8 2 1.4

Potential structure

Required self-electric fields to cancel the external fields

$$\left\langle \overline{\mathbf{E}_{\text{self}}^{RZ}} \right\rangle = \left| \mathbf{E}_{\text{ext}}^{\phi} \right| \cot \theta_B \left(-\widehat{\mathbf{E}}_{\text{ext}}^{\phi} \cdot \widehat{\mathbf{B}}_{\phi} \right) \widehat{\mathbf{B}}_{RZ}$$

ExB drifts induced by the self-electric fields

$$\left\langle \overline{\mathbf{v}_{E\times B}^{RZ}} \right\rangle = \frac{\left\langle \overline{\mathbf{E}_{\text{self}}^{RZ}} \right\rangle \times \widehat{\mathbf{B}}_{\phi}}{B} = \frac{\left| \mathbf{E}_{\text{ext}}^{\phi} \right|}{\left| \mathbf{B}_{RZ} \right|} \cos \theta_B \left(\widehat{\mathbf{E}}_{\text{ext}}^{\phi} \times \widehat{\mathbf{B}}_{RZ} \right)$$

Comprehensive understanding of X-point topology

Critical plasma densities at X-point region

- $\theta_B \rightarrow 0$
- $n_{\text{crit},\parallel} \propto \cot^2(\theta_B) \rightarrow \infty$
- $n_{\operatorname{crit},\perp} \propto \tan^2(\theta_B) \to 0$

Parallel dynamics

Higher heating at X-point region

 $\boldsymbol{n} \ll \left(\boldsymbol{n}_{\mathrm{crit},\parallel} pprox \infty
ight)$

Lower heating at other regions

$n > n_{\text{crit},\parallel}$

Perpendicular dynamics

• Two inflows + Two outflows by mean ExB

 $n > n_{\text{crit},\perp}$

Topology analysis on external EM fields predicts overall plasma evolution

Plasma density would be higher at downstream region

Interpretation of KSTAR simulation results

- Plasma densities are higher at downstream regions
- Plasma temperatures are higher at X-point regions
- Balmer line emissions are observed at higher temperature regions

Forward **B**_{RZ}

Reverse **B**_{RZ}

Same magnitudes, but opposite direction of B_{RZ}

- (Previous) Empirical condition
 - Same prediction for 2 cases
 - High plasma density at X-point region

- (New) Topology analysis method
 Predicted mean ExB
 Upstream region Low plasma density
 Downstream region High plasma density
 Different prediction for 2 cases
 - High plasma density at downstream region

Forward **B**_{RZ}

Reverse B_{RZ}

Topology analysis method well predicted the plasma behaviors

Topology analysis 0.5 ms 1.0 ms 1.5 ms 2.0 ms 2.5 ms 3.0 ms 4.0 ms 18 16 Forward B_{R2} log₁₀(ne) 14 (m) z (m) 12 10 8 1.5 1.5 1.5 2 1 2 1 1.5 2 1.5 2 1.5 2 1 2 1.5 2 1 18 16 log₁₀(ne) Reverse B 0.5 14 (m) a 12 10 8 1.5 1.5 1.5 2 1 2 1.5 2 1.5 1 1.5 2 1.5 2 2

Topology analysis method well predicted the plasma behaviors

Artificial Double Null case 1

Artificial Double Null case 2

Plasma behaviors and positions could be predicted by topology analysis

Topology analysis method well predicted the plasma behaviors

Plasma position could be controlled by designing of X-point topology

Summary

- We propose the first systematic breakdown theory by considering plasma response
 - : "Turbulent ExB mixing avalanche"

M.-G. Yoo, Nat. Commun. (2018) 9:3523

- Crucial roles of self-electric fields as the plasma response are newly discovered
 - ✓ Cancellation of external electric fields (parallel)
 - Heating power and growth rate decrease
 - Responsible for slow plasma formation
 - ✓ Dominant new transport by ExB drifts (perpendicular)
 - Dominant transport mechanism especially for heavier ions
 - Responsible for homogeneous plasma structure along magnetic field lines
- The new physical insights on the complex EM topology can help designing robust breakdown scenario strategy
- The theory is getting paid attention in start-up researches
 - D.J. Battaglia, *et al.*, "Reduced model for direct induction startup scenario development on MAST-U and NSTX-U" Nucl. Fusion **59** (2019)

