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A domestic liquid metal PFC design study was initiated in FY 2020 2
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• Goal: design LM PFC concepts for a nuclear device

• Options: cooling with Li, with Li and He, & a porous layer concept 

• Potential issues: MHD flow instabilities, Li pumping through a strong 

magnetic field, corrosion/erosion, plasma/material interactions….

• We look for a design window - high heat removal capability while 

meeting all the limitations with scoping calculations and 3D analysis

• Experiments for model validation and to test material and flow 

properties conducted in test stands and linear flow experiments 

with applied B

From Rajesh Maingi Presentation



Liquid Lithium Flowing Wall 3

1 m

RAFM 5 mm

U=1 m/s

Li 5 mm

U=10 m/s He Cooling

U=5 m/s He Cooling U=5 m/s adiabatic wall

U=1 m/s He Cooling

• Surface temperatures below 450 °C can be achieved at 10 
MW/m2 heat flux ~10 m/s Lithium Velocity

• Effect of He Cooling is Negligible

• Stability of the free surface is an issue
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10 MW/m2 Peak Heat flux



Liquid Lithium Flowing Wall Evaporation Effect 4
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• Evaporation Effect on 
Temperature Distribution is 
Negligible Below 600C
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Items outlined for the study: 5

• Can such high-velocity Li flow be established?
• Li injection and extraction
• Li flow over the divertor plates
• Li pumping

• How to intensify heat transfer in the Li flow?
• Active and passive flow control
• HT promoters
• Surface waves

• What could be practical design solutions?
• Curved substrate vs. flat substrate
• Axisymmetric flow vs. segmented flow
• Insulating walls vs. conducting walls
• Inserting He pipes directly into Li as a heat sink/HT promoter
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Liquid Lithium System with Porous Wall 6
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• Liquid lithium is flowing along the heated wall in the amount sufficient to remove most of the 
incoming heat. The porous wall is placed on top of the liquid coolant. 

• This porous wall allows stabilizing the surface of the flowing coolant due to porous system drag. 



LL MHD Pumping system 7

Porous Zone Tungsten +Liquid Li

Solid Substrate RAFM or 
Tungsten

Liquid Li flow 
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• Liquid lithium flow under the porous wall is 
organized into a series of rectangular 
channels directed perpendicular to the 
toroidal magnetic field. 

Cross-section of liquid lithium channel with porous wall
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MHD Pumping system in rectangular channel 8

Porous Zone Tungsten +Liquid Li

Solid Substrate RAFM or 
Tungsten

Liquid Li flow 
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• Liquid lithium flow under the porous wall is 

organized into a series of rectangular 
channels directed perpendicular to the 
toroidal magnetic field. 

• Negligible Pressure difference between 
lithium and plasma can be maintained due to 
MHD pumping

• The walls of the channel perpendicular to the 
magnetic field provide structural support for 
the porous wall, and simultaneously serve as 
a conduit for the current for MHD pumping 

Cross-section of liquid lithium channel with porous wall
A Khodak 11/23/2020



Solid Blanket with LL as a Coolant 9

Solid First Wall

Solid Substrate RAFM or 
Tungsten

Liquid Li flow 
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• MHD pumping system can be realized with 
solid first wall. 

• Evaporation of Li can be used in this case to 
enhance heat transfer

• Pressure difference can still be very low

Cross-section of liquid lithium channel with porous wall
A Khodak 11/23/2020



MHD Flow very Favorable for Efficient Heat Transfer 10
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5 ns 10 ns 15 ns 20 ns 25 ns

1mm
Ha=398
Re=4345

2.5mm
Ha=995
Re=10989

5mm
Ha=1989
Re=21936

Bext=10T

Bext=0T
Re=8500
Turbulent 
Flow

V=5 m/s  Re/Ha=11
Laminar Flow

• For the parameters we considered MHD flow is laminar

• MHD velocity structure is favorable for heat transfer: flat 
core and thin boundary layer

• With magnetic field flow in 5 mm vertical channel  is 
turbulent

Electric Current
Colored with Electric Potential



Analytical Model Reynolds Analogy 11

• Boundary layer zone the thermal profile is 
linear and follows Reynolds analogy.

• Heat transfer coefficient is  proportional to 
the friction coefficient. 

• Analytical model developed for the free 
surface MHD flow is successfully applied  to 
channel flow

A Khodak 11/23/2020
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Numerical Modeling and Assumptions 12
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1. Solve MHD equations over a 2d 
slice of the channel

2. Interpolate over the 3d channel

3. Solve heat transport equations 
on frozen velocity field

H
EA

T

B

V

J



Validation of the MHD pumping model  13

A Khodak 11/23/2020

Analytical solution for MHD flow in rectangular channel with infinitely conductive walls 
parallel to external field:

G. A. Grinberg, Appl. Math. and Mech. (PMM)  2 5 (1961) 1536
J. C. R. Hunt and K. Stewartson, Journal of Fluid Mechanics 23, 563-581 (1965).
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Validation of the numerical model was performed 
using analytical solution.

Relative difference between present CFD results and 
analytical solution linearly decreases with increase  
of relative wall conductance

Hartmann 
Layer

𝑣𝑚𝑎𝑥 =
𝐼𝑦𝐵𝑒𝑥𝑡 𝑥

2𝑎
+ 𝜌𝑔 cos𝛼

𝑎2

𝜇𝐻𝑎
𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑣𝑚𝑎𝑥 1 −
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Inverse proportional to 
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Temperature Distributions 14
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Incoming plasma heat flux is absorbed by the flowing liquid lithium
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Temperature Distributions in Peak Temperature Cross-section 15
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Temperatures below 500 C can be achieved 
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Porous System Peak Temperature and Efficiency 16
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• High-Velocity Li flow can be established.
• Li injection and extraction
• Li flow over the divertor plates
• Li pumping



Implementation 17

• Porous Liquid Lithium System 
is under development

• Model of the liquid lithium 
cooling system was created

• Parametric studies are 
performed for the novel 
divertor liquid lithium system 
which includes porous front 
wall.
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Optimization 18
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• Heat is only lost to evaporation at very 
low velocities

• Smaller channel is more efficient —
generates less Joule heat

• Temperature is decreased by increasing 
current and velocity

• Smaller Channel can’t remove as much 
heat at low currents

Simulations by B. Arnold SULI 2020



Porous 3D Printed Tungsten 19
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• Organized porous structures
• Conductive material
• Porous structures with liquid metal 

can limit temperature on the 
divertor surface

3D printed tungsten porous model imported from CAD Imported from P Rindt

Tree Type V Type

Magnum PSI results. P. Rindt 2019



3D printed SiC can provide insulation material 20

A Khodak 11/23/2020 From www.goodmantechnologies.com



Conclusions 21

• MHD Pumping of Liquid Lithium near the first wall has the following advantages:
• Efficient Removal of plasma  heat flux at relatively low temperature

• Maintaining constant low pressure along the channel

• Favorable profile for efficient heat transfer
• Porous first wall allows

• Liquid lithium delivery on plasma facing surface
• Stabilization of liquid lithium free surface due to surface tension and MHD drag

• Solid first wall can be considered creating efficient blanket design
• Numerical and analytical models show feasibility of the concept
• Experimental proof of concept can be achieved at PPPL using Galinstan
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