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A domestic liquid metal PFC design study was initiated in FY 2020 %)

«  Goal: design LM PFC concepts for a nuclear device
«  Options: cooling with Li, with Li and He, & a porous layer concept

- Potential issues: MHD flow instabilities, Li pumping through a strong
magnetic field, corrosion/erosion, plasma/material interactions....

«  We look for a design window - high heat removal capability while
meeting all the limitafions with scoping calculations and 3D analysis

«  Experiments for model validation and to test material and flow
properties conducted in test stands and linear flow experiments
with applied B

From Rajesh Maingi Presentation
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Liquid Lithium Flowing Wall ) A
*  Surface temperatures below 450 °C can be achieved at 10
MW/m? heat flux ~10 m/s Lithium Velocity
*  Effect of He Cooling is Negligible
*  Stability of the free surface is an issue

Film of liquid lithium
| . over the diverter surface:

[
8
3

]
1
Heat Flux [W/mA2] :
1
I
\

o

U=1m/s He Cooling

Temperature
621

= J=1 m/s/

OOEbDDn LE 0a 06 08 1
567
540
513 .
486 L 5
= Li5mm

431

U=5 m/s adiabatic wall - \

377

350 /
[

RAFM 5 mm
U=10 m/s He Cooling \

A Khodak 11/23/2020 ——

U=5 m/s He Cooling




Liquid Lithium Flowing Wall Evaporation Effect
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Items outlined for the study:

* Can such high-velocity Li flow be established?
* Liinjection and extraction
* Liflow over the divertor plates
* Lipumping
 How to intensify heat transfer in the Li flow?
e Active and passive flow control
* HT promoters
e Surface waves
* What could be practical design solutions?
e Curved substrate vs. flat substrate
* Axisymmetric flow vs. segmented flow
* Insulating walls vs. conducting walls
* Inserting He pipes directly into Li as a heat sink/HT promoter
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Liquid Lithium System with Porous Wall

Porous First Wall
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« Liquid lithium is flowing along the heated wall in the amount sufficient to remove most of the
incoming heat. The porous wall is placed on top of the liquid coolant.

» This porous wall allows stabilizing the surface of the flowing coolant due to porous system drag.
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LL MHD Pumping system

; Plasma heat flux ;
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Cross-section of liquid lithium channel with porous wall
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Liquid lithium flow under the porous wall is
organized into a series of rectangular
channels directed perpendicular to the
toroidal magnetic field.



MHD Pumping system in rectangular channel

Plasma heat flux ;
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Liquid lithium flow under the porous wall is
organized into a series of rectangular
channels directed perpendicular to the
toroidal magnetic field.

Negligible Pressure difference between
lithium and plasma can be maintained due to
MHD pumping

The walls of the channel perpendicular to the
magnetic field provide structural support for
the porous wall, and simultaneously serve as
a conduit for the current for MHD pumping



Solid Blanket with LL as a Coolant @

; Plasma heat flux ;

Solid First Wall « MHD pumping system can be realized with
solid first wall.

« Evaporation of Li can be used in this case to
enhance heat transfer
%

» Pressure difference can still be very low
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MHD Flow very Favorable for Efficient Heat Transfer 3
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Analytical Model Reynolds Analogy
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Numerical Modeling and Assumptions
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Validation of the MHD pumping model

Validation of the numerical model was performed 3.00%

using analytical solution.

Relative difference between present CFD results and
analytical solution linearly decreases with increase

of relative wall conductance
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Analytical solution for MHD flow in rectangular channel with infinitely conductive walls
parallel to external field:

IyBext x a? 0.956a 1
Umax = oa +pgcosa E Vaverage = Vmax | 1 — NI ~Ha

G. A. Grinberg, Appl. Math. and Mech. (PMM) 2 5(1961) 1536
J. C. R. Hunt and K. Stewartson, Journal of Fluid Mechanics 23, 563-581 (1965).



Temperature Distributions
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Incoming plasma heat flux is absorbed by the flowing liquid lithium
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Temperature Distributions in Peak Temperature Cross-section ‘W)
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Temperatures below 500 C can be achieved
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Porous System Peak Temperature and Efficiency

* High-Velocity Li flow can be established.
* Liinjection and extraction
* Liflow over the divertor plates

* Li pumpin -
pumping MHD pumping loss 1m long Channel as a
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Implementation

* Porous Liquid Lithium System
is under development

* Model of the liquid lithium
cooling system was created

* Parametric studies are
performed for the novel
divertor liquid lithium system
which includes porous front
wall.
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Optimization
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*  Temperature is decreased by increasing * Heat is only lost to evaporation at very
current and velocity low velocities
*  Smaller Channel can’t remove as much * Smaller channel is more efficient —
heat at low currents generates less Joule heat
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Porous 3D Printed Tungsten DF 19

J plasma heat load |

« Organized porous structures

» Conductive material

» Porous structures with liquid metal
can limit temperature on the
divertor surface
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3D printed SiC can provide insulation material
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Conclusions

*  MHD Pumping of Liquid Lithium near the first wall has the following advantages:
- Efficient Removal of plasma heat flux at relatively low temperature
« Maintaining constant low pressure along the channel
* Favorable profile for efficient heat transfer
*  Porous first wall allows
* Liquid lithium delivery on plasma facing surface
* Stabilization of liquid lithium free surface due to surface tension and MHD drag
*  Solid first wall can be considered creating efficient blanket design
*  Numerical and analytical models show feasibility of the concept
*  Experimental proof of concept can be achieved at PPPL using Galinstan

A Khodak 11/23/2020



