Near real-time streaming
analysis of big fusion data

R. Kubel, R.M. Churchill®. 1.Y. Choi?, J. Wang?, L. Stephey?, E. Dart*, M. Choi>, J.
Park °, CS Chang?, and S. Klasky?

Princeton Plasma Physics Laboratory  %Oak Ridge National Laboratory

3 NERSC * ESNet > Korean Institute of Fusion Energy

% PRINCETON -8 PRINCETON
) JPPPU v UNIVERSITY



Facilitate remote near real-time streaming analysis of
big fusion data

Move the plasma gap 2cm

" inward




Why?

Long-pulse fusion devices will generate bigger data sets
ITER: Expected Petabytes / day
Increasing spatial / temporal resolution from diagnostics
Overnight analysis -> In-between shot analysis -> Intra-shot analysis
Al/ML algorithms require big data sets
Systematically collect analyzed fusion data
Compute environments are changing
Increase in FLOPS is driven by accelerators (GPU/TPU/ASIC)

Fusion relies on international collaborations:
Watch data analysis results in real time from remote, just like being in
the control room



Demo: remote analysis of KSTAR ECEI data at NERSC

Delta framework is a distributed system that

facilitates federated data analysis Screen layout:
et P M"":H"' R T tY Network Network CPU
g bW : bandwidth | bandwidth utilization
SRS e
r . KSTAR NERSC Cori(NERSC)
e Data relay Data analysis
e, | generator



http://www.youtube.com/watch?v=56d93cN9oNo&t=172

Outline

Design and implementation details of the Delta framework
Benchmark results

Web-based live visualization

s W b~

Conclusions and future work



Outline

1. Design and implementation details of the Delta framework
2. Benchmark results

3. Web-based live visualization

4. Conclusions and future work

@ 2020-12-21 NSTX-U Magnetic Fusion Science Meeting 6



Delta framework is a distributed system that
facilitates streaming data analysis

:Cori MPI rank 1

' processor

MPI rank 2

KSTAR

Data Transfer Node

NERSC

generator

ADIOS2 DataMan

Data Transfer Node

middleman

Spin service
(Rancher)

webserver

REST
socket.io

KSTAR to NERSC: 100 GBit/s through ESnet

DTN to Cori: 10 GBit/s

generator streams data into HPC facility

Datais using ADIOS2 library

middleman serves as a relay

processor receives data stream and performs

analysis on HPC resource

® Analyzed data is stored in a database where it is
accessible from externally facing services

e Webserver running on Spin serves visualization

requests from web-clients

ADIOS2: High-performance parallel I/0 library for HPC environments:

®  Pub-sub streaming: Allows multiple processors listening to a
generator.
e  File-based I/0: custom binary-pack format (similar to HDF5)


https://github.com/ornladios/ADIOS2

Data flow through the Delta framework

generator 2 )
ata loader | ¢! . . :
Load data and metadata (sample rate, diagnostic setup etc) into memory
\
| Writes data chunk-wise it to an ADIOS stream
ADioSZstream | Read chunks from the ADIOS stream and put them in a Queue
processor : I
o 8 i ' In separate threads: consume items from the
J ( P " Queue and instantiate data_chunk objects
mg:eliip i d-ata_chunk
cot mosel generstr ||| i conar | || momacoss 1 ™| romen || memocssen | | T Successively apply a series of preprocessing
b 3 > ) filters on the data_chunk
analysis ist i
MR ]| | ~component- Perform data analysis tasks on the filtered
e | i

-
«component: |
storage

¢——— data_chunkin parallel. Inmediately store

results.




Reproducible data analysis results guaranteed
through shared configuration file.

generator E= ] (

«component
tlatﬂn_loado;>$j /

«component: |

writer

ADIOS2 Stream

Delta components share one configuration file.
Together with software version (git commit number),
and metadata, all analysis results are reproducible.

processor

uadelsmézJ il
/

//

«
preprocessing ED
list

«Queue» $:| I data_chunk
main loo| 5 &
datamodl P - + data: array p nen%~_. comp 21 uoomponerr%':’
|_data_mode’_generator || |, metadata: dictionary prep! 1 prep! 2 ""| preprocess n
+ new_chunk(raw_data, met >
data_chunk
< 4
«component» &)
lysis list :
«component» & |[“ | «component» a
«component» «component»
kernel kernel
«oomponen%j T «component: |
storage storage

@ 2020-12-21

NSTX-U Magnetic Fusion Science Meeting




Delta uses a queue and threading to concurrently
perform streaming |/O and data analysis

main () :
A pool of worker threads consume queue items

my_reader = reader(config) def consume (Q, task list):

attrs = my reader.get_attrs(“stream_attrs”) while True:
while True: try:
= Q.get()
stepStatus = my reader.BeginStep () except queue.Empty:
if StepStatus: break
= preprocess.submit (m)
stream data = my reader.Get(SSSSS_ECEI_NN) analysis.submit (m)
= new_chunk (stream data, attrs, cfqg) Q.task_done()
Q.put _nowait (data_chunk)
my reader.EndStep () e Reader fetches raw data and attributes from queue
e new_chunk() constructs a object for the specific data at

hand, e.g. ECEl frames.
® preprocessing and analysis routines interface with




Outline

1. Design and implementation details the Delta framework
2. Benchmark results

3. Web-based live visualization

4. Conclusions and future work

@ 2020-12-21 NSTX-U Magnetic Fusion Science Meeting 11



Benchmark workflow: Perform spectral analysis

of ECEIl data from KSTA

ECEl visualizes large scale 2.5d plasma structures

-20
Yun et al. RSI 85 11D820 (2014)

KSTAR ECE diagnostic: samples 24*8=192
channels with MHz sampling rate
Diagnostics produces image time-series with
about 1GB/sec

216 220 224 216 220 224 R (cm)

R

ECE benchmark workflow:

Estimate the power spectrum of each channel. Then calculate:
Cross-power: S, (w) = E[X(w)YT(w)]

Coherence: C, (w) = |S, (w)]/ S, (w)" S, (w)*

Cross-phase: P, (w) = arctan(Im(SXY(w)/Re(SXY(w)))
Cross-correlation: R, (t) = IFFT(S, (w))

for all (132) — 18336 channel pair combinations (X,Y).

Channel time series are divided into chunks of 10,000 samples.
— Use HPC to analyze many small, independent tasks.

Use cases:

Estimation of local dispersion relation (flow velocity),

2d characterization of T, turbulence, identification of

avalanche-like T_transport events:
Choi et al. NF 57 126058 (2017); Choi et al. NF 59 086027 (2019);




Multi-threaded implementation of analysis kernels
show strong scaling on Cori

® Spectral analysis kernels C, S, P.
C S > P e Using cython to circumvent
20 F J71 1 pythons global interpreter lock
E C: Coherence {1 L B S {4 e Execution walltime decreases
i 1t 1 linearly up to 16 Threads
15 F 11 il
. l S: Cross-power 9=° More threads mean less MPI ranks:
10 F 4L P: Cross-phase | 5 =
P : = For a constant allocation: N__ =N
- @ CPU MPI
5F o iy Ny _
- ® Increasing number of threads N_ .
decreases number of available MPI

ranks NMPI —Less communication

1 2 4 8 16 32 1 2 4 8 16 32
Threads

6} 2020-12-21 NSTX-U Magnetic Fusion Science Meeting 13



Delta executes the benchmark workflow in between shots

MPI ranks Benchmarks ran on 6 Cori nodes - Xeon Haswell with 64
< - o cores, 128GB RAM (limitation of the real-time queue)
N —
1000 7 e 192 MPI ranks / 2 threads: Too much
communication, CPU cores are not effectively
800 . utilized.
@ e Little speedup when using more than 16 cores
v 600 i ® 6 MPIranks / 64 threads: Shortest walltime, about
£
g 400 1 : :
Time between shots: approx. 10 minutes
Fastest execution time: 190 seconds.
200 i
Caveats:
e Datais read from filesystem, no streaming.
J 16 3 64 e Data analysis results are not stored
Threads Walltime does not change much when streaming +

storage is added.



Performing data analysis on GPUs decreases

overall walltime by about 35%

Benchmark workflow executed on traverse
® 4 nodes
® 32 MPIranks / 4 threads per rank

Caveats: Using a drop-in GPU implementation. Not optimized

Scenario | pre-process | Analysis | Avg. walltime / s
1 Host Serial 933.9
2 Host Threads | 805.7
3 Host GPU 609.4
4 GPU GPU 605.3

6) 2020-12-21 NSTX-U Magnetic Fusion Science Meeting

w w
o %]
L

N
v
L

=

Walltime / s
- N
wv o
! L
i
[=]
3
A WNRQ@

=
o
L

[&]
L

O .
cross_correlation cross_phase  cross_power  coherence

Analysis kernel

Kernel execution time measured in each
scenario, averaged over 3 runs.

15



Outline

1. Design and implementation details of the Delta framework
2. Benchmark results

3. Web-based live visualization

4. Conclusions and future work

@ 2020-12-21 NSTX-U Magnetic Fusion Science Meeting 16



Visualization: pull-based

A web server connects

Database that has analyzed data stored
Clients which wishes to receive that data

Web server runs on NERSCs spin service as a
containerized application.

Workflow:

Client queries a shot

Server queries the database and returns list of
available data chunks

Client selects a data chunk

Server retrieves chunk from database, performs
post-processing and forwards data

Client receives data and updates the plot



https://docs.google.com/file/d/1Fpjkr7itd96qmBL6-PTVT5qfREt53WAt/preview

Implementing real-time data visualization

A web server connects
- Database cursors, that receive new analyzed
from Delta processor
- Web-clients which wish to receive that data

Implementation:

- Web-client registers interest in a certain
data-stream with the server

- Web-server opens a cursor to the database, or
associates the client with an existing cursor

- Whenever new data arrives on the cursor, push
it to all web-clients. No polling.

- Clients update a plot with the newly received
data.

Web

server

key

value

room_01

room object

room_02

room object

/open_rooms

(—HTTP: confi
\
— T TP : retrieved room _ide——"

‘i—;cm: room_(2—

room

+ room_config: config

+ subscribed_clients: list [socketio_id]

+ room_id: string, 6 character ID

+ DB cursor

+ add_client(socketio_id): None

+ del_client(socketio_id]

): None

+ background_task(room_id, config)

Web page

Configurationv

config1

config2

config n

Data updates

Database

new data to room_0

Y




Streaming Visualization (proof-of-concept)

Left: Delta processor on Cori:
analyzes data and stores result in
database
Middle: Webserver automatically receives
updates from the database and
forwards them to the client.
Right: Website (showing 2 clients plots)
reactively update the plot when they
receive their respective update

Workflow: Select what data to plot. No
user-interaction required to receive updates.



http://www.youtube.com/watch?v=AXG3ma_f-iM&t=80

Outline

1. Design and implementation details of the Delta framework
2. Benchmark results

3. Web-based live visualization

4. Conclusions and future work

@ 2020-12-21 NSTX-U Magnetic Fusion Science Meeting 20



Conclusions and future work

We developed the Delta framework which facilitates

Fast, reliable streaming of big fusion data from experiment to remote HPC centers
Analysis of data on distributed compute resources, both CPU and GPU

Storage of analyzed data together with metadata in a database

Web-based, interactive visualization of analyzed data

Example spectral analysis workflow can be performed in between shots.
Building a database of analyzed fusion data will aid in training data-intensive algorithms
Future work will explore

e  Use of ML algorithms to automatically detect and label MHD phenomena (f.ex. unsupervised such as clustering or
conv-nets for feature detection)

Tighter coupling of data-producers to the streaming framework, for example ingesting data directly from digitizers and
bypassing the file-system.

More flexible visualization options such as jupyter notebooks

Explore use of established streaming data processing software, such as Apache Beam/Kafka.



