

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Database of steady discharges without ELMs in NSTX

D.J. Battaglia, R.E. Bell, S. Gerhardt, B. LeBlanc, S. Sabbagh and the NSTX team

NSTX-U Monday Science Meeting January 25, 2021

Database of NSTX has been formed to support the FY22 Joint Research Target (JRT) activities

- FY22 JRT: Enhanced confinement regimes without ELMs – Improve projections of non-ELMing regimes to next-step devices
- There are five working groups in the JRT22 (see final slide)
 - Working Group 1 will strive to form a multi-machine database of discharges with steady, ELM-free phases
- This talk: database of discharges without ELMs on NSTX
 - Similar to recent effort comparing non-ELMing regimes on DIII-D
 - C. Paz-Soldan et al., PPCF, submitted (<u>https://arxiv.org/abs/2012.03339</u>)
 - Valuable for identifying discharges that can be used for detailed analysis in other JRT22 Working Group activities

Review: NSTX achieved Wide Pedestal (WP) H-mode via reduction in recycling with lithium wall coatings

- Lower recycling reduces n_{e,sep} and ∇n_e
 - Lower density gradient changes nature of micro instabilities driving χ_e
 - Improved confinement in ELM-free regime

J. M. Canik, et al. Nucl. Fusion 53 (2013) R. Maingi, et al. Phys. Rev. Lett. 103 (2009) M. Coury et al. Phys. Plasmas 23 (2016)

	P _{NBI}	Lithium
ELMy H-mode	6 MW	0 mg
ELM-free H-mode	5 MW	150 mg
Wide ped. H-mode	4 MW	550 mg

INSTX-U

Database aims to find "steady" ELM-free, MHD-free periods in NSTX discharges

- Carbon density almost always has a secular increase in ELM-free regimes on NSTX
 - Z_{eff} and radiated power increase through the discharge
 - Do any regimes approach a "steady" impurity concentration?
- Procedure for forming the "steady" database for NSTX:
 - Identify a 300ms ELM-free and MHD-free time interval in $I_{\rm p}$ flattop
 - Do linear fit of values over final 200ms
 - 200ms is about 2-5 times a typical energy confinement time
 - DIII-D database uses a 300ms minimum interval
 - Require that ...
 - Linear slope of W_{MHD} normalized to the average W_{MHD}: between 0.2 s⁻¹ and -0.1 s⁻¹
 - Linear slope of n_{GR} < 0.55 s⁻¹
 - This is about <u>four times larger than what is acceptable in the DIII-D database</u>

Database disclaimers

- This is a "trophy shot" database
 - Selectively searched for shots that expand operating space in database
 - May exclude shots that look similar to other shots already in database
 - Database can give a sense of what is possible and what was tried, not always what is inaccessible
- All entries checked manually
 - Shots have to pass the eye candy test (subjective)
 - I may have missed your favorite shot ... please send me shot #'s of interest
- Some shots excluded due to data quality and availability
- So far, just "control room" level analysis (EFIT02 + MPTS + CHERs)

A guide to the plots

<u>Colors</u>

- Enhanced Pedestal (EP) H-mode
 - Enhanced thermal confinement at low ion collisionality
- Lithium dropper
 - Inter- and intra-shot injection
- Pulsed n=3 fields
 - Small amplitude, ELMs are not triggered
- Vertical jogs (strike-point sweep)
 - Only one ELM-free pulse so far
- All other shots
 - Orange: Highlight on some plots
- <u>Symbols</u>
 - X: average n=3 field amplitude is > 0.2 kA outside n=3 EFC
 - Diamond: n=3 EFC
 - **Triangle:** all other shots
 - Small red plus: 134991. This is "the shot" that achieves really good confinement, but only steady for about 100ms

Observation: We could do more to use n=3 below ELM-triggering threshold as an actuator for edge transport and stability

Outline of database results

Impurity and density accumulation in ELM-free regimes

Operational regime for steady discharges on NSTX

• EP H-mode observations

NSTX-U

Accumulation of impurities was the biggest challenge to ELM-free regimes on NSTX

- Orange points are discharges that achieve lower Z_{eff} and rate of carbon accumulation
 - Lower energy confinement with lower $I_{\rm p}$ and $B_{\rm T}$
 - Large flux expansion with shallow incidence angle at lower divertor
 - Smaller X-point height, larger inner gap
- Pair of sequential shots demonstrate impact of divertor topology on carbon accumulation

Some other shots of interest ...

٠

NSTX-U

1.0

0.8

Inferred deuterium inventory can decrease as carbon is increasing

- "Change in all other ions" can be positive or negative
 - No strong correlation with neutral fueling, NBI fueling and/or lithium conditioning was found
 - HFS fueling roughly adjusted with wall pumping conditions
- 140168 achieves stationary n_e
 - Carbon increasing, deuterium decreasing
 - Due to lithium chunk, described in backup
- 134991 has largest decrease in "ions that are not carbon"
 - Strong SGI fueling, large lithium deposition, strikepoint on LLD

NSTX-U

Lower neutral fueling facilitates access to EP H-mode

- EP H-mode observed with low neutral fueling – Facilitates access to low edge ion collisionality
- Steady EP H-mode discharges had a larger X-point height and smaller inner gap
 - Greater distance between dominant Xpoint and divertor floor seems beneficial
 - Perhaps this lowers the neutral source?
 - Large upper/lower gaps lead to discharges with smaller plasma volume
- Motivates combining large flux expansion with larger upper/lower gaps in an open divertor

Summary of findings while searching for discharges with "stationary" density

- Discharges with large flux expansion and low incidence angle did achieve stationary carbon density at lower $Z_{\rm eff}$ on NSTX
 - But, discharges had lower thermal confinement
- Lithium wall conditioning facilitated conditions with stationary or decreasing n_{Deuterium} inventory
 - Steady EP H-mode phases seem to favor keeping the X-point away from divertor plates
- NSTX-U goal: Integrate high-confinement regimes with divertor configurations that minimize carbon influx
 - New tools: expanded divertor coils for balanced DN with enhanced flux expansion, divertor and PFR gas injection, fishscaled tiles

Outline of database results

Impurity and density accumulation in ELM-free regimes

Operational regime for steady discharges on NSTX

• EP H-mode observations

Most "steady" ELM-free discharges use 4MW of NBI heating

3 beam discharges more likely to have larger density rise at higher confinement

Difficult to avoid core MHD with $P_{NBI} < 3MW$ in H-modes

Discharge with LLD at 320°C has largest thermal confinement (worth some more analysis)

Scaling of triple product with $B_t a I_p$ in ELM-free regimes similar to DIII-D, but with a larger scalar

EP H-mode discharges stand out in normalized confinement

With the caveat that there are only a few EP H-mode discharges in the database The results are consistent with a "bifurcation" in the transport Do not consider these plots as a quantitative comparison to scaling laws: $\tau_{\rm E}$ & P_L are not corrected for NBI efficiency, fast ion component, dW/dt ...

ELM-free regimes in STs can operate at large β_N with comparable H_{1.89} to A~3

17

Outline of database results

Impurity and density accumulation in ELM-free regimes

Operational regime for steady discharges on NSTX

• EP H-mode observations

EP H-mode: improved neoclassical energy confinement at low collisionality

- EP H-mode: bifurcation in transport occurs at low ion collisionality
 - Ion neoclassical transport decreases with v_i*
 - Edge ion temperature gradient increases
 - Enhanced anomalous pedestal transport lowers edge density
 - Positive feedback as this lowers collisionality
 - Data consistent with threshold at $v_i^* \sim 0.3$
- EP H-mode discharges achieve largest edge T_i gradients normalized to total heating power

NSTX-U

 Generally, triple product improves with lower ion collisionality

Scaling of edge rotation gradient and core rotation may provide insight to transport mechanisms

- Maximum edge rotation gradient and ion temperature gradient increase together
 - Note that maximum v_t gradient is not always spatially aligned with the maximum $T_i^{}$ gradient
 - Edge E_r shear typically proportional to v_t gradient
 - Discharges with n=3 fields and EP H-mode tend to exhibit stronger T_i gradient compared to v_t gradient
- Energy confinement and a metric for momentum confinement scale together
 - Anomalous electron energy transport is the dominant core transport mechanism

NSTX-U

Conclusions

- NSTX database focuses on "steady" discharges void of ELMs and MHD
 - Supports FY22 JRT efforts toward multi-machine comparisons
 - All discharges in the database produced with lithium wall conditioning (increased wall pumping) leading to a wide pedestal
- Very few discharges would clear the bar for "steady" in the DIII-D database
 - Density, namely carbon density, is rising during the ELM-free phase
 - A few discharges with large flux expansion did achieve steady carbon inventory
 - NSTX-U 5 year plan addresses this challenge: (Thrust 2-1) "Particle control and heat flux mitigation necessary for stationary discharges"
- Database further confirms uniqueness of EP H-mode
 - Accessed at lowest edge ion collisionality
 - A distinctive step-up in normalized performance and triple product

Next steps

- Use consistent equilibrium and TRANSP tools for all discharges of interest
 - Most discharges have TRANSP runs, but differ in equilibrium constraints (EFIT, LRDFIT) and/or TRANSP settings
- Continue to comb NSTX results for new entries
 This has been a nice nostalgic "work-from-home" activity
- Please get involved with the JRT22 Working Groups!

FY22 JRT Working Groups

- Operational space database and 0-D Projections
 - Develop common metrics for comparing regimes and use 0-D scaling to project scenarios to next-step devices
 - Coordinator: Devon Battaglia (<u>dbattagl@pppl.gov</u>)
- Characterization of Edge Transport Mechanisms
 - Apply fluid and gyrokinetic tools to compare edge transport mechanisms in stationary non-ELMing regimes
 - Coordinators: Xi Chen (<u>chenxi@fusion.gat.com</u>), Darin Ernst (<u>dernst@psfc.mit.edu</u>)
- Edge Macro-Stability and MHD-driven transport at strong shaping
 - Characterize scaling of edge MHD stability and associated transport in target regimes
 - Coordinator: Jake King (<u>iking@txcorp.com</u>)
- Role of Wall Conditions and Divertor Compatibility
 - Explore compatibility of regimes with PFC and divertor solutions using experiments and simulation
 - Coordinator: Alessandro Bortolon (<u>abortolo@pppl.gov</u>)
- Expansion of Operating Space toward Burning-plasma Regimes
 - Propose and execute new experiments that extend the operating space on tokamaks operating in FY21-22
 - Coordinators: Darin Ernst (<u>dernst@psfc.mit.edu</u>), Xi Chen (<u>chenxi@fusion.gat.com</u>)

Discharge with "Lithium chunk" in the divertor achieves $dn_e/dt \sim 0$ (shot 140168)

- Lithium chunk dropped from LITER and fell to the outboard section of the lower divertor
 - Several shots attempting a snowflake divertor vaporized chunk into small chunks
 - Shot 140168: Switch to high-delta shape that avoids the chunk (XP1045)
 - Ran with a lot of lithium deposition
 - Single ELM might have vaporized small chunks
- Achieves constant electron density despite impurity density increasing
 - Ben had to perform special analysis on the MPTS data due to large lithium emission
- One could argue this is an example of intra-shot wall conditioning (i.e. mass injection)

Low carbon accumulation discharges share some similarities

- Shots with the lowest carbon accumulation rate tend to have ...
 - X-point close to the lower divertor
 - Large flux expansion
 - Flux surfaces that have a low incidence angle
 - Larger gap between the inner divertor corner
 - Lower energy confinement
- But, some shots match these conditions and have larger carbon accumulation
 - Needs more investigation
- One pair of shots demonstrates impact of flux expansion and incident angle on the carbon content

EP H-mode has lower edge n_e , larger core T_i and T_e

- Edge n_e , n_D is reduced - Z_{eff} larger for $\psi_N > 0.9$
- Location of minimum E_r shifts inward
- Pressure similar for $\psi_{\rm N}$ > 0.8
- Characteristic increase in edge ∇T_i
 - Larger core T_{i} and T_{e}
 - Bigger increase in core T_i

WP H-mode 141125 EFC + 400A n=3 EP H-mode 141133 EFC + 500A n=3

EP H-mode realized with more peaked density profile and lower v_i^*

- EP H-mode: smallest $-\nabla n_e$ for $\psi_N > 0.9$, largest for $\psi_N < 0.7 \stackrel{1.0}{(a)}$ – Density profile is more peaked
- EP H-mode profiles have largest edge $-\nabla T_i$
- $\nu_i^* < 0.3$ near $\psi_N = 0.9$ due to lower density - Farther in, smaller ν_i^* due to larger T_i
- E_r shear peaks inside location of maximum -∇T_i
 Max -∇T_i typically close to E_r minimum in EP H-mode profiles
- Enhanced thermal confinement without reverse q-shear

Non-resonant 3D fields in WP regime alters edge E_r, Z_{eff}

- Small impact on electron profiles
 - Little change to T_e
 - n_e slightly broader in edge region
- Bigger impact on ion profiles
 - Rotation, E_r reduced via NTV
 - T_i smaller in edge, matched in core
 - n_D broader, n_C pedestal shifts inwards
 - Significant reduction in edge Z_{eff}
- Pressure profiles are similar

WP H-mode 141131 EFC only WP H-mode 141125 EFC + 400A n=3 EP H-mode 141133 EFC + 500A n=3

