

Overview of Objective 1 NSTX-U 5 year plan (2021-25)

Extend confinement & stability physics basis at low-A and high beta to lower collisionality relevant to burning plasma regimes

Walter Guttenfelder on behalf of the NSTX-U team

February 8, 2021

Primary deliverables and impact of Objective 1

Five-year deliverables:

- Assess confinement & pedestal scaling at full capability, understand achievable limits, and project to future devices
- Assess and manipulate energetic particle (EP) distribution for high-confinement, high-f_{NI} scenarios, and project to future devices

Impact:

Enable physics-based scenario and configuration optimization of future tokamak concepts

EP phase space accessible in NSTX-U

Objective 1 is organized into 3 Thrusts

- Thrust 1: Characterize and understand H-mode performance at lower collisionality using increased B_{T,} I_p, P_{NBI}
- Thrust 2: Identify transport and stability mechanisms that determine core and pedestal profiles and overall performance
- Thrust 3: Develop reduced stability and transport models required to run and validate integrated predictive simulations

Thrust 1: Characterize and understand H-mode performance at lower collisionality using increased B_{T.} I_p, P_{NBI}

Deliverables:

- Measurement of τ_E & pedestal structure to lower ν_* , especially in high performance plasmas suitable for high f_{BS}
- Measurement and understanding of fast ion dynamics and EP instabilities to validate NBI deposition, project BP α -physics
- Optimization of integrated core-edge performance using flexible shaping, wall conditioning and NBI

Impact:

 Establishing thermal and EP confinement and scaling at low-A and reduced v_{*} critical for optimizing aspect ratio and geometry for 100% non-inductive pilot plant concepts

NBI CD efficiency vs. neutron deficit

Thrust 2: Identify transport and stability mechanisms that determine core and pedestal profiles and overall performance

Deliverables:

 Validate core and pedestal mechanisms responsible for anomalous losses at low-A and reduced v_∗, and their collective roles in determining profiles

Measured high-k scattering compared to ETG sim + synthetic diagnostic

Predicted GK pedestal instabilities in H/EPH modes

Thrust 2: Identify transport and stability mechanisms that determine core and pedestal profiles and overall performance

Deliverables:

- Validate core and pedestal mechanisms responsible for anomalous losses at low-A and reduced v_∗, and their collective roles in determining profiles
- Demonstrate confinement optimization and EP phase-space engineering through validated understanding using flexible NBI, 3D fields, HHFW

Suppression of GAE due to tangential NBI

Thrust 2: Identify transport and stability mechanisms that determine core and pedestal profiles and overall performance

Deliverables:

- Validate core and pedestal mechanisms responsible for anomalous losses at low-A and reduced v_∗, and their collective roles in determining profiles
- Demonstrate confinement optimization and EP phase-space engineering through validated understanding using flexible NBI, 3D fields, HHFW
- Validation of HHFW coupling and SOL loss physics, optimization of HHFW coupling with NBI

Impact:

 A validated, self-consistent, understanding of thermal and EP transport, sources, and sinks is critical to optimize performance and enable physics-based predictions beyond 0D scalings

Thrust 3: Develop reduced stability and transport models required to run and validate integrated predictive simulations

Deliverables:

- Reduced models for core & pedestal thermal and EP transport
- Validation of full-discharge dynamics with increasing integration of reduced models
- Integration of low-A reduced models with those at conventional-A to enable configuration optimization of next step devices

• Impact:

 Integrated predictive simulations enable projection of full-discharge dynamics for current and future devices

Predicted neutron rate and NBI ion density

Highest priority deliverables in the first run campaign

- Establish confinement and pedestal structure scaling at expanded I_p , B_T , $P_{NBI} \rightarrow$ lower v_* (initial focus on boronization-only)
- Begin investigating the effect of lithium wall conditioning on pedestal structure and confinement
- Characterize all 6 NBI beam sources over expanded I_p, B_T, and begin addressing role of EP instabilities on NBI deposition
- Essential requirements beyond "first plasma" facility capabilities:
 - Streamlined workflow and support to enable robust, routine equilibrium, transport and EP analysis

Many validation and model development activities can be addressed immediately in the near-term (pre-ops)

- Spans many topical areas (transport, pedestal structure, energetic particles, 3D fields, RF heating)
- E.g. current FY21 Research Milestones (will soon be formulating FY22 Milestones)
 - R(21-1): ST pedestal transport modeling using gyrokinetics
 - R(21-3): Optimization of NBI mix for AE-mitigated scenarios
 - R(21-4): ST pedestal stability modeling and determination of stability thresholds associated with ELMs
- Plenty of existing NSTX data to utilize, aim to make projections for NSTX-U
- Will soon begin regular Science Group meetings to coordinate immediate, ongoing research & preparations for NSTX-U operations

Summary: Research in Objective 1 will advance physics basis to predict and optimize performance of NSTX-U and future fusion devices

 Advance understanding of thermal and fast-ion confinement at low-A and reduced collisionality needed to project high-gain, high-f_{BS} pilot plant scenarios

- Exploit new NSTX-U capabilities to validate key physical mechanisms, clarify the role of low-A on performance
- Integrate with physics basis at conventional-A to enable prediction, optimization of future concepts