

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Advancing understanding and predictive capability for fast-ion driven instabilities and associated anomalous transport in NSTX-U

Neal A. Crocker (UCLA) and Zhihong Lin (UCI) NSTX-U External Collaborators Meeting – Feb. 15, 2021

UCLA/UCI grant supports Expt.+Theory effort focused on fast-ion physics and transport

- Collaboration between UCLA and UCI
- Research goals support NSTX-U Objective 1:
 - Experimental investigation of anomalous fast-ion & energy transport from broad range of modes (from BAE to CAE/GAE) in new NSTX-U regime (higher IP, B_T, β, P_{NB}, more tangential injection) (UCLA)
 - Validation of physics models in GTC and HYM for simulating fast-ion modes and their fast-ion and energy transport (UCLA/UCI)
 - GTC: BAE/RSAE/TAE, CAE/GAE, potentially ICE
 - HYM: CAE/GAE
 - Verification of GTC with HYM and linear theory for CAE/GAE (UCI)
- Indirect support for NSTX-U Objective 2:

- investigation of anomalous fast-ion transport in noninductive scenarios

 UCLA + UCI currently collaborate on MAST-U under separate funding

UCLA/UCI collaboration organization and key needs

- UCLA effort:
 - Starts July 2022 (~ end of recovery); minimal funding before
 - Off site: Neal Crocker (1/4 time), Clive Michael (1/3 time)
 - On site: staff scientist (full time), graduate student (full time)
- UCI effort:
 - Started 9/2021
 - Off site: Zhihong Lin and graduate student
- Need office space for UCLA scientist + student
- Need support for verification and validation of PPPL code HYM (author: Elena Belova)

NSTX-U will feature powerful diagnostics for AEs

- Arrays of internal fluctuation diagnostics probe structure & amplitude up to CAE/GAE frequencies
 - -BES
 - Reflectometry
 - 1st harmonic ICE may also be possible
- External Magnetics broadband sensitivity up to low ICE harmonic frequencies

CAEs & GAEs candidates for core energy transport in NSTX \Rightarrow what about NSTX-U (higher P_{NB}, ...)

- CAEs & GAEs excited by Dopplershifted cyclotron resonance with beam ions
 [N. N. Gorelenkov, NF 2003]
- CAE & GAE activity correlates with enhanced \chi_e in core
 [D. Stutman, PRL 2009; K. Tritz, APS 2010 Invited Talk; N. A. Crocker, PPCF 2011]
 - $T_{\rm e}$ profile flattens as $P_{\rm NB}$ increases
 - $-\chi_e$ from TRANSP modeling
- Two leading hypotheses:
 - Stochastization of e⁻ guiding center orbits enhance χ_e [NN Gorelenkov, NF 2010]
 - Coupling to KAWs = missing transport channel \Rightarrow TRANSP

χ_e Wrong [Ya.I. Kolesnichenko, PRL 2010, E.V. Belova, PRL 2015]

BAE/RSAE/TAE potentially transfer/transport energy from fast-ions to thermal plasma ⇒ power balance impact?

- modeling/simulation shows energy transfer from fast-ions to thermal plasma via multiple mechanisms, sometimes across space (i.e. transport)
- NOVA-K adapted to evaluate energy transport [GJ Kramer NF 2019]
- GTC self-consistently simulates a broad range of mechanism [W Deng NF 2012, Y Liu NF 2017]

Recent V&V of GTC simulations of RSAE/TAE in DIII-D show good agreement \Rightarrow Extend to NSTX-U

- Good agreement in frequency *f*: 5% variations
- Growth rate γ : 17% variations for n=4 & 5
- Frequency *f* agrees better with experiment at 790ms
- Simulations use profiles at 805ms

GTC simulations of BAE/LFM undergoing validation for structure predictions in DIII-D

- LFM: low frequency mode (interchange-like), sometime identified as "BAAE" in DIII-D.
- radial structures from simulations show reasonable agreement with measurement
- frequencies show significant differences
 - simulation & measurement make approximations on plasma flows – relatively significant for low frequency of BAE/LFM

[*Choi et al, NF 2021*]

Verification of GTC simulation of CAE/ICE

- Simulation model
 - Fully kinetic (6D) Vlasov equation for ions (FKi)
 - Drift kinetic equation for electrons (DKe)
 - Poisson equation for electrostatic potential $(\delta \phi)$
 - Parallel Ampere's law for parallel vector potential (δA_{\parallel})
 - Perpendicular electron force balance for compressible magnetic perturbation (δB_{\parallel})
- Verification of linear simulation of CAE/ICE
 - Massless electron, perpendicular propagation $(k_{\parallel} = 0)$
 - Simulation with all k_{\perp} exhibits CAE/ICE (upper panel)
 - Simulations with a single k_{\perp} agree with dispersion relation from kinetic theory (lower panel)

Y. Yu et al, 2021

UCLA – Planned research activities for 5 Year Period

Y1–Y2:

- Initial planning/scoping for experiments
- Collaborate with UCI and NSTX-U researchers to develop GTC BES synthetics diagnostics. **Y3**:
- Collaborate to validate analytic theory (Lestz 2020) and HYM for GAE/CAE
 - Extend measured scaling of GAE/CAE properties & energy transport to BT <= 0.85, higher P_{NB} & β
 - Measure CAE/GAE mode structure; Compare with HYM
 - Experiment to investigate more tangential NBI on CAE/GAE
- Experiments to validate for BAE/TAE/RSAE stability and frequency
- Collaborate to with UCI to develop GTC reflectometer synthetics diagnostics

Y4:

- Collaborate to validate analytic theory, HYM and GTC for GAE/CAE
 - Extend measured scaling of GAE/CAE properties & energy transport to BT <= 1 T, full beam power, even higher P_{NB} & β
 - Measure CAE/GAE mode structure; compare with HYM and GTC
- Experiments to investigate to BAE/TAE/RSAE energy transport
- Collaborate to validate GTC for BAE/TAE/RSAE stability and frequency and fast-ion transport **Y5**:
- Collaborate to validate GTC and HYM for CAE/GAE energy transport
- Collaborate to validate GTC for BAE/TAE/RSAE for energy transport
- Experiments to investigate interaction of AEs with turbulence

NSTX-U

UCLA

UCI – Planned research activities for 5 Year Period

Y1:

 Verify GTC FKi/fluid electron simulation of GAE/CAE in simple tokamak geometry using analytic theory and HYM

Y2:

- Benchmark GTC/HYM simulation of GAE/CAE in NSTX
- Develop GTC BES synthetics diagnostics

Y3:

- Benchmark GTC/HYM simulation of GAE/CAE in NSTX-U
- Assist UCLA on GTC GKi/DKe simulation with δB_{\parallel} of BAE/TAE/RSAE in NSTX-U
- Develop GTC reflectometer synthetics diagnostics

Y4:

- Validate FKi/DKe simulation of GAE/CAE in NSTX-U using BES/reflectometer data
- Assist UCLA on validating GKi/DKe simulation of BAE/TAE/RSAE in NSTX-U
- Study fast-ion transport by AEs

Y5:

- Study electron heat transport by GAE/CAE in NSTX-U
- Assist UCLA on studying electron heat transport by TAE/RSAE in NSTX-U
- Simulate AEs and microturbulence interaction in NSTX-U

UCI – Progress since funding: GTC simulation of ICE excitation by α -particles

- Magnetoacoustic cyclotron instability (MCI) driven by α -particles with population inversion
- Higher harmonics excited by higher α -particle density n_{α} (left panel)
- Growth rate $\gamma \propto \sqrt{n_{\alpha}}$: qualitative agreement with Dendy PF 1992 (right panel)
- Near term plan: verification of GAE/CAE with k_{||} ≠ 0; benchmark with HYM for GAE/CAE conventional tokamak

Y. Yu et al, 2021