SOLPS-ITER Predictions for a Highly Radiating Lithium Vapor Box Divertor in NSTX-U

Eric D. Emdee, Robert J. Goldston, Jeremy D. Lore, Xin Zhang NSTX-U Research Meeting

February 22nd, 2021

Lithium Vapor Box

- The lithium vapor box seeks to detach via lithium evaporation near the target, and condensation further upstream
- Past work has shown that the lithium vapor box could function with a completely open divertor

 In this presentation I am using SOLPS-ITER to examine an open diverter lithium evaporation scheme and compare with a baffled configuration

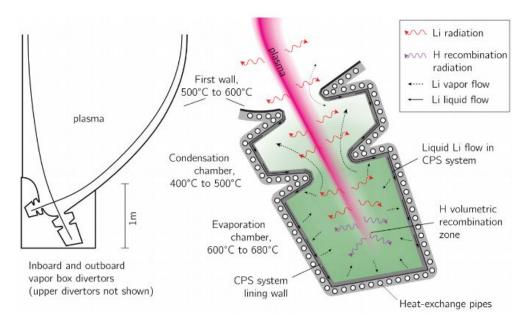
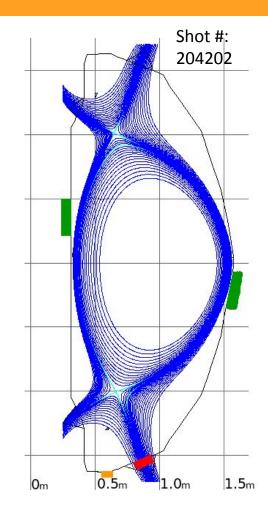


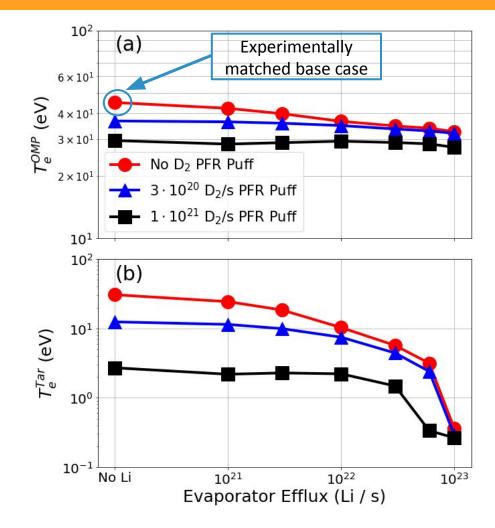
Diagram Credit: Jacob Schwartz


SOLPS-ITER

- High density of neutrals in divertor region requires Monte-Carlo modeling
- SOLPS-ITER uses the fluid code B2.5 coupled with the Monte-Carlo code EIRENE
- B2.5 solves Braginskii-type parallel momentum balance equation
 - Newer friction and thermal force models given in Sytova et al. CPP (2018)
- No drifts turned on for now
- Coupling of these two codes allows for accurate predictions in both the divertor region and the upstream plasma

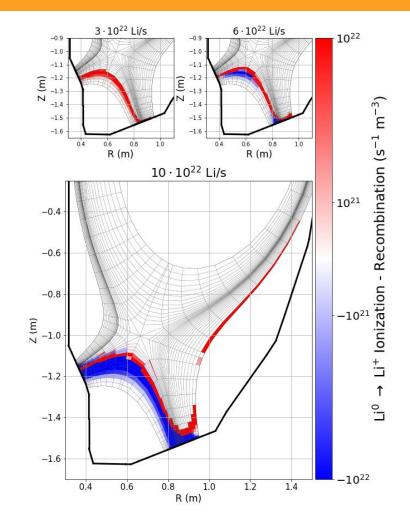
Simulation Set-Up

- Used experimental magnetic equilibrium
- D₂ gas puff locations shown in green and orange
 - Green locations are in experiment and used in profile matching
 - Orange is added in Private Flux Region (PFR) for predictive simulations
- Lithium evaporator location in red
- 2MW of input power
- 1.5x10¹⁹ m⁻³ core density B.C

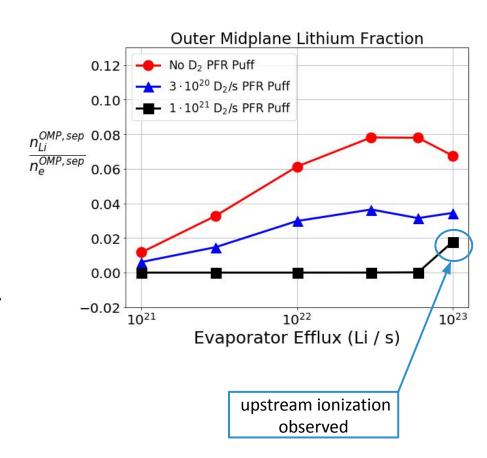


Effects on T_e

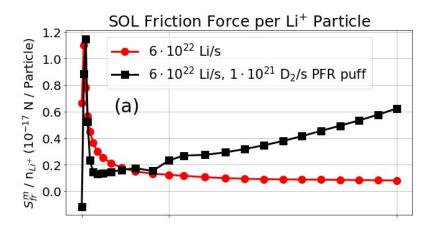
 SOLPS separatrix electron temperatures at the (a) outer midplane and (b) lower outer target for a variety of PFR D₂ puff intensities and Li evaporator effluxes shown to the right

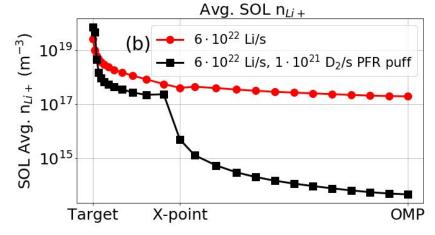

 Detachment levels of target electron temperature reached for 6x10²² Li/s and greater

Detachment


- Poloidal cross-section of the volumetric ionization rate for three cases with 1x10²¹ D₂/s in the PFR.
- At 1x10²³ Li/s the ionization front lifts fully off the target, indicating full detachment.
 - Upstream ionization observed with full detachment
 - Causes upstream lithium contamination

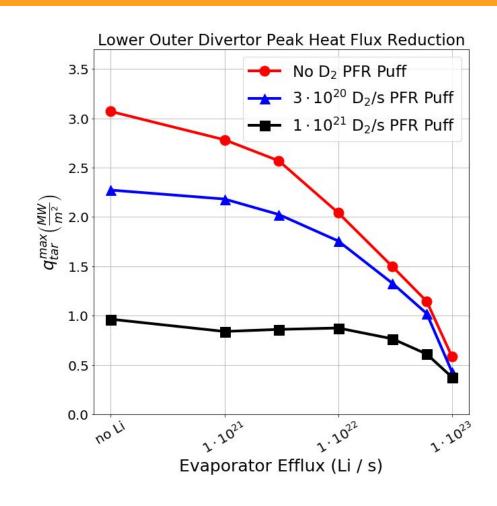
Lithium Fraction


- Predicted lithium fractions at the outer midplane for different evaporator effluxes and D₂ puff intensities.
- The lithium fraction is strongly dependent on the amount of D₂ puffed in, allowing the lithium fraction to be effectively controlled.
- Upstream ionizations caused the fully detached case to have non-negligible lithium at the OMP, regardless of D₂ puff



Friction decreases upstream lithium

- Addition of D₂ puffing increases friction acting on Li+
- Results in much less lithium upstream with especially sharp drop below X-point



Target Heat Flux

- Heat flux drops significantly with neutral injection
- Heat flux able to be reduced by 80% from the experimentally matched base case
- q^{max}_{target} < 0.5 MW/m²
 evidence of detachment

Lithium Condensation Locations

- The distribution of where the lithium ends up for each of the lithium cases, other than the lower outer divertor target.
 - The "other" category primarily consists of flux to the upper outer divertor but also contains some lithium ending up at the higher LFS walls.
- Since no fraction is greater than 0.4, lower outer divertor lithium condensation is always >60% (and typically >80%) of total condensation

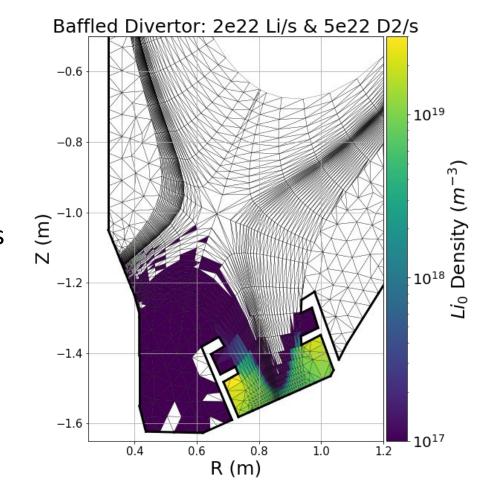
Lessons Learned

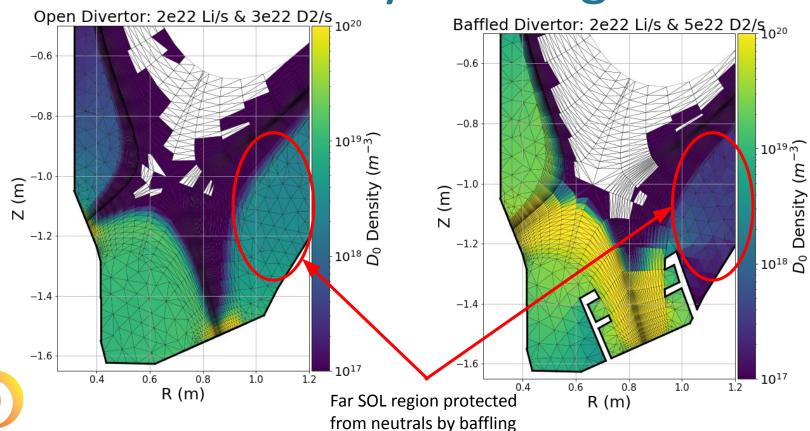
- Detachment possible with lithium vapor
- Deuterium puffing is a knob to control upstream lithium content
- Lithium distributes itself across the lower half of the tokamak with an open divertor

Divertor Closure

 Divertor closure fixes upstream ionization

 Does this translate to higher power?


High Power Operation


Divertor Closure

- ~99% of the lithium condenses inside the lithium vapor box system!
- Corresponds to less than 1mg/s to other locations (other divertors and PFR walls primarily)
- Lithium fraction upstream is practically negligible
 - $n^{OMP}_{Li}/n^{OMP}_{e} \sim 10^{-4}$

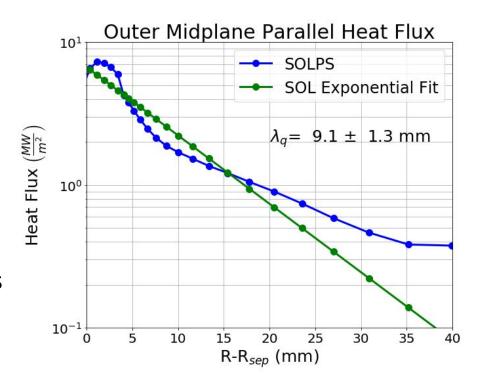
D0 Contained By Baffling

Summary

- Lithium Vapor Box divertor can cause full detachment in a completely open diverter at low powers but at high powers requires baffling (closure)
- ~99% of the lithium stays in the boxes with less than 1mg/s going elsewhere in a baffled divertor at 10MW
- Upstream ionization is an issue in a detached open divertor but not an issue for a detached closed divertor.
- Baffling/condensation contains not only the lithium but also the deuterium since deuterium is entrapped in colder liquid lithium.

Future Work

- Examine the effects of drifts on the simulations
- Can the LVB handle higher heat flux densities at the target?
 - Effects of H-mode?
 - Predictions of 96 MW/m² at target
- Simulate a lithium vapor box in a pilot plant to determine viability for a reactor-grade device



Back-Up Slides

Profile Matching

- Midplane parallel heat flux exponential fit shown to the right yielded λ_{q} =9.1 mm ±1.3 mm
- This is slightly narrower than experimental L-mode scaling from MAST using this shot's parameters (13.8 mm)
- Indicates reasonable NSTX-U
 transport coefficients

