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Finite-Collisionality Generalization of 
the Heuristic Drift Model of SOL 
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Generalizing the HD Model → GHD Model
• Original “low-gas-puff” HD Model assumed convective-like losses 

from SOL, but upstream Te determined by Spitzer-Härm diffusion. 
• To generalize for finite collisionality, must include parallel  

thermal resistance + effect of target Te  = Tt  on upstream Te  = Tu. 
• Use the SOL parallel energy confinement time to define : 

                    and    
• Use the 2PM for heat diffusion along B and heat loss at the target: 

                  and   

λq,GHD

τ E! =
3nuTuL!
q!,u

λq,GHD ∼ τ E!vd ,u

Tu ,eV
7/2 −Tt ,eV

7/2 = 7
2
q!,uL!
κ 0

q!,u =
γ ntTtcs, t
1− fpower
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HD Model OK over Low-Gas-Puff Range

Collisional: 
Thermal 

resistance 
affects     τE,∥

Sheath-limited: 
Tt  affects Tu

AUG-like parameters

fpower 
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Agreement with AUG H-Mode data OK

η̄ν* ≡ ( 7/3
1 + 2λT /(3λn) ) ( 1 + Z

A )
1/2

(0.672 + 0.076Z1/2
eff + 0.252Zeff)

10−16nsepL∥

T2
sep

fpower 
= 0 ↓1, by 0.05

(q||-weighted radially- 
averaged collisionality.)
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Implications for Shear Flow 
Stabilization of 

SOL Interchange Turbulence

ωs ≡ |ϕ′�′�| /Bt

γint ≡ cs/ Rλp
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GBS Simulations see Shear-Flow Effect

4

F.D. Halpern and P. Ricci 

( T efl e/δφ φ= Λ − ). The simulation results indicate that the 
polarization current contribution is dominated by a radially 
sheared convection of vorticity. Taking a poloidal average, we 
recover the expression
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with the tildes indicating perturbed quantities. This step points 
out that it is the radial shear of the turbulent motion that allows 
diverging parallel currents to arise. The currents flowing into 
the sheath, in turn, allow the potential to decouple from the 
temperature profile. The interaction with the closed magnetic 
field line region, where the electric field has the opposite sign 
than in the SOL, leads thereafter to the radially sheared elec-
tric field characteristic of the narrow heat-flux feature.

Next, we estimate k2˜ φ̃Ω = − ⊥ , and kx x∂ ∼  and ky y∂ ∼ , 
which leads to the radial E B×  velocity of turbulent structures 
propagating across the narrow feature
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The turbulent flux follows immediately from the estimate 
pv xE B,˜ ˜Γ ≈⊥ × . The amplitude of the fluctuations tra-

versing the narrow feature from the edge is estimated as 
p p kx q˜ /( )λ∼  [21, 22]. Then, the near-SOL width can be 

obtained by balancing ∇ ⋅ Γ⊥  against the sheath contribution 

pc e T Lexps fl e( / ) /∥ ∥ ∥δφ∇ ⋅ Γ ≈ . The assumption of parallel 
convection rather than conduction is justified in the case of 
weak poloidal plasma gradients, which was an assumption of 
our analysis. The result is
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In the last expression, we replaced L qR∥=  and we assumed 
that eddys have comparable radial and poloidal wavenumbers, 
i.e. k k kx y∼ ∼ ⊥ around the LCFS. The near SOL wavenumber 
is consistent with simulation results, and with gas-puff imag-
ing of SOL turbulence [23]. As the modes traverse into the 
far SOL, kx decreases while ky remains about constant. We 
also approximate e Texp 1 2fl e

1 4( / ) //δφ− ≈ , based on the LCFS 
values consistently found throughout our simulation scan. 
The weak dependence obtained with respect to the plasma 
parameters can explain, in part, why it is difficult to vary the 
narrow feature width in experiments—the plasma parameters 
appear only indirectly, and through the radial correlation 
length L kxrad /π= . Equation (9) is the principal result of the 
model, and the simpler expression involving kx

1−  is evaluated 
using the radial eddy correlation length from the simulations 
and compared against qλ  in figure 6. The simulation parameter 
range is as mentioned above: q  =  4–16, 250, 500, 10001ρ =−! , 

0.01, 0.1, 1ν = , with qλ  generally increasing with the safety 
factor, at 1ν = , and showing a slow variation with respect to 
the normalized plasma size.

In conclusion, we propose that a narrow layer of radially-
sheared poloidal flows, occurring within the near-SOL, is 
responsible for the steep plasma gradients recently measured 
in the IWL tokamak experiments. Non-linear, flux-driven tur-
bulent simulations demonstrate the spontaneous formation of 
E B×  shearing rates significantly surpassing the expected lin-
ear growth rate of the turbulent modes. Simulation results sug-
gest that q s/λ ρ  increases with q I p

1∼ − , with weaker variation of 

qλ  with respect to ν or ρ!. The analysis of the simulations leads 
us to conclude that the near-SOL turbulent saturation level can 
be determined by balancing the polarization currents driven 
by the turbulence against parallel currents that ultimately flow 
into the limiter. Analytical estimates lead to a gradient length 
of the order of the turbulent correlation length. The proposed 
transport model would suggest that a q Iq p

1λ ∼ ∼ −  scaling 
(e.g. as in the drift heuristic model [24]) can originate from 

Figure 4. Simulated narrow-feature widths in simulations with 
q  =  4–16, ρ =−! 5001 , ν = 0.01.Figure 3. Radial profiles of ″ω ρ φ=×

−
!E B

1 , and the ballooning 
growth rate, /( )γ ρ= !T L2b pe . Computed from a simulation with 
q  =  4, ρ =−! 5001 , ν = 0.01.

Nucl. Fusion 57 (2017) 034001

Halpern & Ricci (Nuclear Fusion, 2017)

ωs = |ϕ′�′�| /Bt

γint = cs/ Rλp

We hypothesize here that the H-Mode in divertor plasmas  
requires  in the SOL.ωs ∼ γint

 in near-SOL region of 
inner-wall limited TCV plasmas, 
where  ~ HD prediction.

ωs > γint

λq
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TCV Near-SOL Data ~ HD Prediction
increased residence time in the SOL, even the upstream SOL width
will grow. This physics requires modeling with 2D divertor codes.

To achieve full detachment necessitates both power dissipation
and momentum balance against a buffer gas at a pressure
approaching 6300 Pa. Based on current experimental experience
with full detachment, it is clear that the buffer gas needs to be very
well confined in the divertor chamber, both geometrically and
through incoming plasma flow, something easier to achieve with
a condensing vapor than with deuterium and tritium. Atomic
lithium vapor in evaporation/condensation equilibrium with a
divertor surface at !950C could supply both the necessary pres-
sure [12] and adequate stopping power for ions and electrons to
establish momentum balance over an acceptable distance [13].

4. Implications for limiter tokamaks (and comparison with
experiment)

On T-10 [14] and TEXTOR [15] it was observed that the appar-
ent parallel heat flux contained both a near and a far scrape-off
zone, which could be characterized by a ‘‘summed exponential’’
form: q||(r) = q||,0,near(r)exp("r/knear) + q||,0,far(r)exp("r/kfar). In both
cases this was made evident by the heat flux pattern observed on
a limiter optimized for a single exponential decay. Similar results
on JET [16] raised concerns that this effect should be taken into
account in the design of the ITER inner-wall limiter, which is to
be used for plasma start-up. Experiments on COMPASS using a tilt-
able limiter [17] have confirmed that the surface heat flux pattern
is consistent with q\ = q||sin(a) for angles down to !3–5!, and that
non-ambipolar currents [18], while present, play a sub-dominant
role. Subsequent measurements on TCV [19], DIII-D [20] and C-
MOD [21] have confirmed the presence of this feature, in some
cases via IR limiter measurements and in others on Langmuir
probes at the limiter or in the plasma.

The HD model was not developed for L-Mode, limiter plasmas.
As discussed in [1] the model clearly does not give the correct glo-
bal particle confinement time for L-Mode plasmas, because there is
more flux across the separatrix than predicted. However it is rea-
sonable that the same drifts and parallel flows would take place
within the SOL, albeit in a noisier environment and fueled more
strongly from the main plasma. In this picture knear would be deter-
mined by HD physics, while kfar would arise from turbulence. In
effect kfar would play a similar role to Eich’s S parameter [2] for
divertor plasmas.

Since limiter plasmas are generally in the sheath-limited
regime, the Spitzer conductivity estimate for Te used in the HD
model is not strictly justifiable. However Te comes in only to the
½ power, and the edge temperatures measured with probes in
COMPASS are close to the calculated Spitzer values using the mea-
sured q||. Furthermore, as shown in [9] the overall scaling for the
SOL width with HD physics and sheath-limited Te is similar.
Changes in the heat-transmission factor, c, due to non-ambipolar
currents [18] play no role in the standard HD calculation, since T,
which determines the SOL width, is set by Spitzer conductivity.
Even in a deeply sheath-limited regime with T# TSpitzer (not seen
in these experiments) kq would scale only as (nsepc)–1/4.

Another difference compared with divertor plasmas is that one
does not expect high recycling at a limiter, and so parallel flows
could be expected to be higher than in a divertor case, but certainly
no greater than cs. This effect goes in the opposite direction. None
of these effects should be as large as a factor of 1.5, so one should
expect the HD model to have somewhat poorer agreement for
these conditions than for H-Mode divertor plasmas, but be repre-
sentative of the trends. In ASDEX-U and JET divertor L-Mode
plasmas [19] the regression fits give scalings that are similar to
the HD model, but significant differences are seen in the variation
with power and size (Figs. 3 and 6 in [19]). The observed overall !2

times greater width could be due to greater choking of flow in the
divertor under ASDEX-U L-Mode conditions and so a longer ion
residence time in the SOL.

Fig. 4 shows the result of plotting data for knear from ‘‘summed
exponential’’ fits, kindly provided by the C-MOD [22], COMPASS
[17,18], DIII-D [21], JET [16] and TCV [20] teams, compared against
the HD result. Also included are single points for T-10 [14] and
TEXTOR [15]. The similarity in trend and in absolute magnitude
to the divertor data in Fig. 1 is striking, supporting the hypothesis
that the same mechanisms are at play. Of practical importance, the
overlap of measured data from large machines such as JET with
small ones such as COMPASS and TCV indicates that the width of
the narrow feature in limiter plasmas scales weakly with system
size, as was found for kq in divertor plasmas. This is consistent with
the fundamental result of the HD model, which is that the basic
scaling of the near SOL width is (a/R)qp, an intensive scaling, as
opposed to the scaling with extensive variables expected in other
SOL models. These results have led to proposed design changes
for the ITER inner-wall limiter.

5. Implications for the tokamak density limit

It is interesting to derive the MHD a parameter in the SOL based
on the assumption that the pressure gradient scale length at the
separatrix is approximately equal to the experimentally measured
kq. If we use Spitzer conductivity to determine Te and assume
nsep ¼!n=3 we find that a so defined is given by

~a¼1:92%10"26R9=7a"2=7q18=7
cyl

!nk"9=7
q B"2

t P2=7
SOLð1 þ j 2Þ"1=7 Zeff þ 4

5

! "2=7

Fig. 5 shows that this parameter, evaluated for the data shown in
Fig. 1, rises rapidly with fGW, largely independently of other param-
eters, as can also be seen for the theory by substituting the HD for-
mula for kq into the above equation.

~aHD ¼0:123f GW
nsep

!n
qcylRB

a
PSOL

! "1=8

1 þ j 2# $3=2 2A
1 þ Z
# $

" #"9=16

%
Zeff þ 4

5

! "1=8

For typical plasma parameters in this data set, this gives
~aHD ! ð2" 3Þ ) f GW .

Fig. 4. Experimental measurements of ‘‘near’’ exponential feature in a range of
tokamaks [16–23] plotted against the Heuristic Drift model.

R.J. Goldston / Journal of Nuclear Materials 463 (2015) 397–400 399

Goldston, JNME 2015

Near-SOL λq for  inner-
wall limited plasmas, 
vs. HD Model
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Interchange Stabilization at High ωs/γint

Zhang, Krasheninnikov, & Smolyakov (Contributions to Plasma Physics, 2019)
No interchange eigenmode for .ωs/γint > 0.4

ZHANG et al. 3 of 6

F I G U R E 1 Growth rate of the most unstable Rayleigh–Taylor
mode versus "̂. V ′

0∕#RT = 0 (dashed black) and its analytical solution
(red circle) from Equation (2), V ′

0∕#RT = 0.2 (dotted blue) and
V ′

0∕#RT = 0.4 (solid green)
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F I G U R E 2 An impact of velocity shear on the eddies of electrostatic potential contour corresponding to the eigenfunctions in Figure 1
for "̂ = 2. (a) V ′

0∕#RT = 0 and (b) V ′
0∕#RT = 0.4

Therefore, we see that the impact of velocity shear on RT instability could be characterized by the effective Richardson
number, which we define as Ri = g|d ln(n0)∕dx|(V ′

0)− 2 = (#RT∕V ′
0)2.[10] It follows that the mode with small wavelength will

first be stabilized by the velocity shear,[12] where the reduction of growth rate for large "̂ is mainly due to the correction
of $%1. On the other hand, for small "̂, there is virtually no stabilization of RT instability. The same trend of an impact
of poloidal velocity shear on the growth rate of the resistive interchange modes[13] and ion temperature gradient (ITG)
modes[14] has also been found.

From Equation (4), we find that the velocity shear leads to a small correction in the eigenfunction. However, taking
into account that this correction is imaginary and asymmetric, it could cause a strong stretching of the eddies of equipo-
tential contour. Such stretching of eddies can be accounted for as follows: from Equation (4), we know $%1(&) is negative
(positive) for & > 0 (& < 0) such that the real part of %̃ , %̃ r = % r(&)cos(kyy) − % i(&)sin(kyy), will be tilted towards positive
(x,y) given − % i(&)sin(kyy)> 0.

To check these analyses, numerical solutions of Equation (1) have been found, as shown in Figure 1, for different "̂
and V ′

0. Notice that both # and V ′
0 are normalized by the parameter #RT such that # tends to unity for the case without

velocity shear as shown in Equation (2). It demonstrates that, for large values of "̂, the fastest growing modes are stabilized,
whereas for small "̂, instability persists. We note that, in the simulations, the real part of ( for all cases is zero such that
the RT modes are purely growing even in the presence of velocity shear, which agrees with our analysis ($(r = 0 to the
second order of V ′

0). We also noted that the eigenfunctions for a marginally stable solution is similar to that in resistive
interchange mode, which is strongly squeezed.[15] The eddies corresponding to the eigenfunctions for "̂ = 2 are shown
in Figure 2, demonstrating that velocity shear causes strong tilting of eddies.
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AUG Data Support Role of  ωs/γint
2PM ansatz for upstream potential 
(Stangeby & Chankin NF 1996): 

 

 

Tt and fT  = Tu /Tt  from the 2PM, 
using upstream TS data. 
Assumes .  
Poor for very low density? 

 from upstream TS data.

ωs =
3Tt + (0.71 + ln(2)/ln( fT))(Tu − Tt)

eBλ2
Te

j∥ = 0

γint

Snap in, decays slowly with increasing density.

AUG L-H-L 
2.5 T, 0.8 MAH-Modes

L-Modes Disrup- 
tions

time (sec)

0.4

Zhang, Krasheninnikov, 
and Smolyakov, CPP 2019  
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GHD H→L Psep Scalings ~ AUG Data

GHD Bernert

ne,sep 2.07 2.53 (H5)

qcyl 2.24 1.48

Bt -1.3 -0.67

• Bernert et al. (PPCF, 2015) only had “H5” density, line averaged over outer 
region of the plasma, not nsep. This is likely to skew the scalings.  
(Bernert et al. expressed the threshold in terms of nH5 vs. qcyl, Psep, Bt.) 

• GHD captures general trends, including negative power scaling with Bt.

Psep,H→L ∝ nα
e,sepqβ

cylB
γ
t

(α)

(β)

(γ)
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Agreement OK for GHD H→L Psep vs. nsep
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Colorbar: mode, ne<7E18 removed

L-Mode
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L-Mode DL (w/o L-H)
L-Mode DL (with L-H-L)
 s/ int=0.4

s/ int = 1.0

0.5

1

1.5
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2.5

AUG 
2.4 - 2.5 T, 800 kA, 

  
removed

nsep < 7 ⋅ 1018/m3

GHD model 
ωs/γint = 0.4

H-Modes

L-Modes

Disruptions
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Confinement Improves for  up to ~2ωs/γint

Confinement degrades on the way down in  to the back-transition.ωs/γint

AUG  
Bt = 2.4 - 2.5 T 

  
removed

nsep < 7 ⋅ 1018/m3

ωs/γint

See also: 
Silvagni et al.  
PPCF 2020. 
Brunner et al. 
NF 2018. 



Psep = 
10 MW
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Favorable Prediction for ITER

AUG
ITER H-Modes predicted to have high  at high nsep / nGW  ~ 0.6.ωs/γint ≈ 2

ωs

γint

ITER

ωs

γint

Psep = 
50 MW

Could the low-density end be related to higher H-L transition power there? 
Possible role of parallel current in reducing upstream potential?
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Conclusions

• HD Model can be generalized (GHD) to lower & higher collisionality. 

• At high collisionality, GHD predicts  to grow ~ like experiment. 

• AUG data shows a strong correlation of  with H vs. L Mode. 
• Consistent with theory for interchange stabilization. 

• GHD model predicts Psep vs. nsep for H→L transition ~ like AUG. 

•  correlates with improved confinement. 

• GHD model predicts high  at high nsep / nGW  for ITER. 
• More work to be done varying parameters in AUG and elsewhere. 

• Also direct (probe?) measurements of  and .

λq

ωs/γint

ωs/γint

ωs/γint

ωs γint


