Finite-Collisionality Generalization of the Heuristic Drift Model of SOL

- Š
- Implications for Shear Flow Stabilization of SOL Interchange Turbulence
 - Rob Goldston, Andrew Brown, Thomas Eich & AUG Team NSTX-U Physics Meeting 2/22/21

Generalizing the HD Model - GHD Model

- To generalize for finite collisionality, must include parallel

$$\tau_{E\parallel} = \frac{3n_uT_uL_{\parallel}}{q_{\parallel,u}} \quad \text{and} \quad$$

$$T_{u,eV}^{7/2} - T_{t,eV}^{7/2} = \frac{7}{2} \frac{q_{\parallel,u} L_{\parallel}}{\kappa_0} \text{ and } q_{\parallel,u} = \frac{\gamma n_t T_t c_{s,t}}{1 - f_{power}}$$

 Original "low-gas-puff" HD Model assumed convective-like losses from SOL, but upstream T_e determined by Spitzer-Härm diffusion. thermal resistance + effect of target $T_e = T_t$ on upstream $T_e = T_u$. • Use the SOL parallel energy confinement time to define $\lambda_{a,GHD}$:

$$\lambda_{q,GHD} \sim \tau_{E\parallel} v_{d,u}$$

• Use the 2PM for heat diffusion along B and heat loss at the target:

HD Model OK over Low-Gas-Puff Range

Sheath-limited: T_t affects T_u

Agreement with AUG H-Mode data OK

 $\bar{\eta}\nu^* \equiv \left(\frac{7/3}{1+2\lambda_T/(3\lambda_n)}\right) \left(\frac{1+Z}{A}\right)^{1/2} \left(0.672+0.076Z_{eff}^{1/2}+0.252Z_{eff}\right) \frac{10^{-16}n_{sep}L_{\parallel}}{T_{sep}^2}$

(q_{||}-weighted radiallyaveraged collisionality.)

 $\gamma_{int} \equiv c_s / \sqrt{R\lambda_p}$

Implications for Shear Flow Stabilization of SOL Interchange Turbulence

 $\omega_{s} \equiv |\phi''| / B_{t}$

GBS Simulations see Shear-Flow Effect

Halpern & Ricci (Nuclear Fusion, 2017)

 $\delta \phi = \Lambda T / e - \phi$ $(\tilde{})$

 $\omega_{s} = |\phi''| / B_{t}$ $\gamma_{int} = c_{s} / \sqrt{R\lambda_{p}}$

 $\omega_{s} > \gamma_{int}$ in near-SOL region of inner-wall limited TCV plasmas, where $\lambda_a \sim \text{HD}$ prediction.

 $\rho_{\star}^{-1} = 500 \ \nu = 0.01$

$$L_{\parallel} = qR$$

 $k \sim k \sim k_{\rm I}$ We hypothesize here that the H-Mode in divertor plasmas requires $\omega_s \sim \gamma_{int}$ in the SOL.

TCV Near-SOL Data ~ HD Prediction

Goldston, JNME 2015

Interchange Stabilization at High ω_s / γ_{int}

Zhang, Krasheninnikov, & Smolyakov (Contributions to Plasma Physics, 2019) No interchange eigenmode for $\omega_s / \gamma_{int} > 0.4$.

AUG Data Support Role of ω_s / γ_{int}

0.4

Snap in, decays slowly with increasing density.

2PM ansatz for upstream potential (Stangeby & Chankin NF 1996): $3T_t + (0.71 + \ln(2)/\ln(f_T))(T_u - T_t)$ $\omega_s =$ $eB\lambda_T^2$

 T_t and $f_T = T_u/T_t$ from the 2PM, using upstream TS data. Assumes $j_{\parallel} = 0$. Poor for very low density? γ_{int} from upstream TS data.

Zhang, Krasheninnikov, and Smolyakov, CPP 2019

	GHD	Bernert
$n_{e,sep}$ ($lpha$)	2.07	2.53 (H5)
Q_{CYI} (β)	2.24	1.48
B_t (γ)	-1.3	-0.67

• Bernert et al. (PPCF, 2015) only had "H5" density, line averaged over outer region of the plasma, not n_{sep}. This is likely to skew the scalings. (Bernert et al. expressed the threshold in terms of n_{H_5} vs. q_{cyl} , P_{sep} , B_t .) • GHD captures general trends, including negative power scaling with B_t .

GHD $H \rightarrow L P_{sep}$ Scalings ~ AUG Data

 $P_{sep,H\to L} \propto n_{e,sep}^{\alpha} q_{cvl}^{\beta} B_{t}^{\gamma}$

Agreement OK for GHD $H \rightarrow L P_{sep} VS. n_{sep}$

n_{sep} [m⁻³]

Confinement Improves for ω_s / γ_{int} up to ~2

See also: Silvagni et al. PPCF 2020. Brunner et al. NF 2018.

Confinement degrades on the way down in ω_s / γ_{int} to the back-transition.

12

Favorable Prediction for ITER

AUG

ITER H-Modes predicted to have high $\omega_s / \gamma_{int} \approx 2$ at high $n_{sep} / n_{GW} \sim 0.6$. Could the low-density end be related to higher H-L transition power there? Possible role of parallel current in reducing upstream potential?

ITER

- HD Model can be generalized (GHD) to lower & higher collisionality.
- At high collisionality, GHD predicts λ_q to grow ~ like experiment.
- AUG data shows a strong correlation of ω_s / γ_{int} with H vs. L Mode.
 - Consistent with theory for interchange stabilization.
- GHD model predicts P_{sep} vs. n_{sep} for $H \rightarrow L$ transition ~ like AUG.
- ω_s / γ_{int} correlates with improved confinement.
- GHD model predicts high ω_s / γ_{int} at high n_{sep} / n_{GW} for ITER.
- More work to be done varying parameters in AUG and elsewhere.
 - Also direct (probe?) measurements of ω_s and γ_{int} .

