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0. RT-MPTS Diagnostics (M. Kaur, F.

Laggner, G. Tchilinguirian, R. Rozenblat)
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NSTX-U RT-MPTS Copy Running at LHD System

/Real time digitizer cards\

f Real time T, and n, data \

160038, R = 3232 mm

The digitizer cards and the real time server (right) as implemented at LHD. The
rt-MPTS T, result is compared with the offline TS system (bottom left), with the

rt-MPTS system in red and reference in blue.
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NSTX-U RT-Thomson: Help Advanced Scenarios
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Comparison of pre-lithium ELMy discharge (black), and two post- Demonstration of pedestal density feedback for super H-mode. As the
lithium discharges with different NBI power (blue, red) gas is increased from discharge to discharge (feed-forward), the MP coil

current is feedback controlled such that a constant pedestal top
electron density (ne,ped) is achieved.
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Control/Physics Overview

Snowflake divertor (SFD) feedback control

Optimization of SFD power and particle exhaust
Improving SFD reconstruction via infrared thermography
Shape control model validation

Optimization of rampup feedforward trajectories
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Neural networks for fast shape reconstruction and modeling
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1. Snowflake divertor feedback control
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Snowflake divertor control — (Vail)

* Snowflake divertor:

Second order null

High flux expansion, heat flux splitting
phenomenon, detachment access

* (Control algorithm:

Proportional control for isoflux shape targets

LQl for snowflake targets (dr, d©)

https://doi.org/10.1088/1361-6587/aaf94a
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https://doi.org/10.1088/1361-6587/aaf94a

High-fidelity closed loop simulation indicates need for time-varying model in control

* Developed and tested with nonlinear closed loop i ae i
simulation environment. T WJ A5 5 prav i l
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B _37kA

* Linear time-invariant (LTl) system insufficient for
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2. Optimization of SFD power and particle

exhaust (Vail, 1zacard)
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Snowflake divertor heat exhaust

* Study of power and particle exhaust

capabilities using in NSTXU using cryopump

+ snowflake

* Develop simple, fast heat flux diffusion
model [Vail, NME] and validated with
UEDGE

— Heat flux diffuses across  but in separate
domains for SFD-minus
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SFD power exhaust with cryopumping

g 2.0 - | Sufficient prlessure | oo l/’Nv2 =1.002 | 7
£ o Fw B &8 ¥nz=1008
 Topump 10MW NBI power, need P> 0.83 = sl ]
. . ic
mTorr at pump inlet [Vail, NME] e ol N ]
—  Assume 24 kL/s volumetric pump rate for liquid é s | j
helium cooled cryopump 521 o
. . D:. 0.0 pump location _ UEDGE grid generation
* At pump optimal location, 83% of SFD b o0 o om0k
equilibria in database meet this condition. Fump inietLocaton Foen 7
* UEDGE simulation: with pumping W[ apmrenmhes 8]
— Terrises at strike points due to reduced 3 150: |
collisionality 5 S R
— SOL power is redistributed among strike points e ST
=» changes the ideal ‘power balanced’ SFD PO [ore o o8 S o8 Seé o | b
configuration = S A
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3. Improving SFD reconstruction via infrared

thermography (Wai, NME, 2020)
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Infrared thermograpy (IRTV) for SFD reconstruction

Snowflake plus: secondary x-point lies in the private flux
region. Scrape-off layer (SOL) fieldlines directly intersect
divertor in 2 locations = 2 heat flux peaks.

Snowflake minus: secondary x-point lies in the SOL.
Fieldlines directly intersect divertor in 3 locations = 3 heat
flux peaks.

Equilibrium vs. IRTV inconsistencies
- Strike point location mismatch
— Occasionally, incorrect # of heat flux peaks for the snowflake type
- IRTV used to improve equilibrium
— Useful for control (feedback on x-point locations [Kolemen, 2018])

- Geometry sensitive to unmeasured divertor currents. Potential use as
diagnostic for bootstrap current.
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Heat flux power fraction in the SFD

* Power fraction f,, measured from the
divertor heat flux profile. At each peak,

Py, = [ 2nR(s)q, (s)ds

« Secondary separatrix position 7,4 xp2
measured from EFIT equilibrium.

« Data is selected from subset of shots
that have wide range of x-point

SP4 Power Fraction, P4 / (P2 + P4)

separation and fit to:
[Ap——
sp4d = P T P4
oo mid,peak —7‘/)\ ffd’l"
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oo qT'Ld ,peak —r/)\"ff dr
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IRTV used to constrain strike points, x-points

Strike points and outboard power
fraction are mapped to x-point
locations [?].
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Measure mismatch

Use IRTV to measure strike points

and ;. Compare to equilibrium
(from EFIT).

Identify x-points

Use algorithm to update the x-
point spatial positions.

]

Solve for new equilibrium

Solve free boundary Grad-
Shafranov equation (using
Toksys [Walker, 2015]) with hard
constraints on x-point positions.

~4-5 iterations to converge
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Extension to NSTXU

Heatflux 140416: 500ms

 Technique was developed with DIlI- 5
D but principles can extend to at
NSTXU <o
— Fewer constraints available to lack of % .|
visibility on inner wall, CHI gap o
NSTX‘U Snowfl'flke 14041‘6: 500ms‘ Tr
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4. Shape control model validation (Wai,

Boyer)
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Model validation for shaping feedforward control

e Shape control based on the toroidal circuit equation which can be
transformed to time-varying state-space system.

Us = RsIs + Mssjs + \ilss,plasma

[1’ = A(t)I + B(t)v }

‘if . a\I’s,plasmal‘
ss,plasma — S
o0l

* Shape control algorithm relies entirely on PID feedback with no feedforward.

* Large shape errors at startup, and small errors during flattop lead to poor
performance.

* Adesign tool that translates a target shape evolution into approximate
feedforward current evolution is needed
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Model validation

®* First step is to validate the model versus
experiment, so that current evolution can be
simulated.

— Vessel currents play a strong role on equilibrium, especially
with NSTXU short pulse length

®* Use agreybox fitting procedure to identify: coil
power supply internal inductances, vacuum vessel
resistances, plasma resistance Rp(t).
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Vacuum vessel currents show inconsistency with measured.

20



Vessel fitting results modify resistance in bellows, passive plates

10f 204660 Vessel Currents

®* Fitted model parameters give much 3
better match to vessel currents,
plasma current.

* Resistances that changed the most -l
with fitting are consistent with
expectations

—  Bellows

—  Passive plates, ‘effective’ resistances . . . . . . . . . .
. . . 1] 01 02 03 04 05 06 07 08 09
difficult to measure because of nontoroidal Time [s]
Eddy Currents 20 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

T
[ Original
e it N

2 3
T
1

Resistance [mOhm]

2 o e B N
T
1

0

O D L O

SPGOPNGR SN FOFCION SOOI SO I
PR ELE T T 8

N SRS o o
& o<z°q¢>;q FFEL &P FPEE L
<

% v Date Name / Event

z[m]

NSTX-U

N .
T

o

g

e/

=
J
s os

112
rim]

Bellows and passive plate
locations

21



Identify plasma resistance Rp(t)

®* Plasma resistance an important time-
varying parameter to identify

* Sets the trajectory for OH coil

®*  Currently, using values fit from the
dynamics model.

— Infuture, could couple with evolution
predictors (Nubeam net, current profile
evolution, Te/ne modelling)

—  Fitted values not far from simple Te
modeling with Spitzer resistivity

_ 27Ron = re’m!/?

Res = ~
T ka7 (dmeo)2(KTL)3?

In A
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5. Optimization of rampup feedforward

trajectories (Wai, Boyer)
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Optimization of feedforward trajectories -

Iterative time slice algorithm:

User inputs a few . Solve an .
o Flux map is used to L Identify vessel Use a neural net to
target equilibria at : oo optimization . . L
. ) i obtain equilibrium . . currents and update quickly find equilibria
times (either shaping . problem to identify oo . .
currents (e.g. via , the target equilibria from simulated coil
parameters or flux . coil current :
gsdesign) . . to include these currents
maps) trajectories

Coil current Comparison

B True ]
[ gsdesign reconstructed | |
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Optimization to find feedforward trajectories

* Define a cost function of the form

N
J = Z(Ikﬂ' — Thyi) T QUi — Thti) +
i=1

AIF QuATLy,

Subject to: (dynamics constraint)

I = A1+ B(t)

* The reference trajectory r depends on
vessel currents, and A(t)/B(t) depend
on the equilibrium, so this problem
should be solved iteratively.
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6. Neural networks for fast shape

reconstruction and modeling (Boyer, Wai)
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Eqnet finds equilibrium from coil currents

coil_currents_PCA

. g 100
®  Feedforward trajectory planner could be useful 5 10 Tr
as an operator tool, especially if results can be 8.0, | , . ,
0 5 10 15 20 25
obtained quickly! ~1 min
. . . . N vessel_currents_PCA
® Several steps currently in optimization take i
~1hour e
« 1073 e
— Free boundary GS solutions for all equilibria timeslices
— Identify plasma flux response for all times 5 100 q_PCA
>
®  Eqnet: finds approximate flux map based on coil Eledy | =
currents, vessel currents, q and p profiles. =0 ; o B % 25
—  Use PCA reduction of inputs, n_components selected for N p_PCA
99% explained variance s 1;‘_’2
é 102
@ 1073 : . . y
0 5 10 15 20 25

Principal Component
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®* Uses separate PCA components for rampup
and flattop

—  Allows accurate for accurate estimation during
rampup (~ t < 300ms) since rampup samples under-
represented in database

®* Egnet has standard multi-layer perceptron
(MLP) framework.

Input Layer Hidde[‘ Layers Output Layer

Generic MLP network

2.0 A
1.5 1
1.0 1
0.5 1
0.0 1
—~0.5 -
~1.0
~1.5-

—2.0 A
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Future extensions to include estimation of response

®  Future extension

Vacuum response to PF1AU1 Plasma-only response to PF1AU1
/ T /

204660: 100ms

Total response to PF1AU1

— Train NN to identify the plasma
response

— Intheory, identifying plasma
response does not require much
more representation capacity
than estimating the equilibrium

—  Targets could be identified from
code (gspert) or from actual
data (derivative of the
equilibrium wrt time, minus the
vacuum response)

Plasma response calculated from the gspert code
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