

Simulations and Theory of Compressional and Global Alfvén Eigenmode Stability in NSTX and Beyond

<u>Jeff Lestz</u> (*UC Irvine*) Elena Belova, Nikolai Gorelenkov, Eric Fredrickson (*PPPL*) Neal Crocker, Shawn Tang (*UCLA*)

> NSTX-U Monday Physics Meeting Princeton, NJ March 15, 2021

Motivation and Main Results

- **Motivation**: sub-cyclotron Alfvén Eigenmodes (AEs) have been experimentally linked to anomalous electron temperature flattening in NSTX
 - No theory quantitatively reproduces the observations
- **Goal**: predict instability conditions for realistic neutral beam (NBI) distributions using analytic theory and numerical simulations
- **Main result**: simple theory describes high frequency AE excitation and demonstrates how to stabilize modes with additional NBI source
 - Explains NSTX-U suppression of AEs with new beam source
 - Provides insight to control and study the associated electron energy transport

Outline

- Introduction: Alfvén Eigenmodes Linked to Anomalous Electron Transport
- Hybrid Simulations Reveal Complicated Stability Boundaries
- Simple Analytic Theory Explains Simulations
- Theory Yields Experimental Insights
- Injecting Multiple Beams Can Control Alfvén Eigenmodes

Outline

- Introduction: Alfvén Eigenmodes Linked to Anomalous Electron Transport
- Hybrid Simulations Reveal Complicated Stability Boundaries
- Simple Analytic Theory Explains Simulations
- Theory Yields Experimental Insights
- Injecting Multiple Beams Can Control Alfvén Eigenmodes

Anomalous T_e Flattening in NSTX Correlates with CAE/GAEs

- Beam-driven compressional (CAE) and global (GAE) Alfvén eigenmodes have been excited in NSTX(-U), MAST, DIII-D, AUG, and may be present in ITER
- Temperature profiles can not be explained by turbulence in gyrokinetic simulations
- Methods to control CAEs/GAEs are essential to studying and predicting the electron energy transport that they induce¹

¹D. Stutman *et al.* Phys. Rev. Lett. **102**, 115002 (2009)

How Can CAEs/GAEs Affect Temperature Profiles?

Energy Channeling

- AE in core can mode convert to KAW near edge, damping on electrons
- Modifies effective beam energy deposition profile^{2,3}

Orbit Stochastization

- Sufficiently many unstable AEs can stochasticize electron orbits
- Enhances diffusion, transporting energy away from the core⁴

²Y.I. Kolesnichenko *et al.* Phys. Rev. Lett. **104**, 075001 (2010)
 ³E.V. Belova *et al.* Phys. Rev. Lett. **115**, 015001 (2015)
 ⁴N.N. Gorelenkov *et al.* Nucl. Fusion **50**, 084012 (2010)

UCI University of California, Irvine

Sub-cyclotron Alfvén Eigenmodes in NSTX(-U)

- Compressional Alfvén eigenmode (CAE): ideal magnetosonic mode: ω ≈ kv_A
- Global Alfvén eigenmode (GAE): discrete shear Alfvén eigenmode existing below minimum of Alfvén continuum: ω ≤ [k_{||}(r)v_A(r)]_{min}
- CAEs/GAEs interact with fast ions through Doppler-shifted cyclotron resonance $\omega - \langle k_{\parallel} v_{\parallel} \rangle - \langle k_{\perp} v_{\text{Dr}} \rangle = \ell \langle \omega_{ci} \rangle$
- Observed to propagate both **co-** $(k_{\parallel} > 0, \ell = 0)$ and **cntr-** $(k_{\parallel} < 0, \ell = 1)$ to the beam/plasma current with |n| = 3 - 15, $\omega/\omega_{ci} \approx 0.1 - 1.2$
 - Do not typically drive fast ion transport, unlike lower frequency modes (TAEs, RSAEs, BAEs, ...)

Outline

- Introduction: Alfvén Eigenmodes Linked to Anomalous Electron Transport
- Hybrid Simulations Reveal Complicated Stability Boundaries
- Simple Analytic Theory Explains Simulations
- Theory Yields Experimental Insights
- Injecting Multiple Beams Can Control Alfvén Eigenmodes

Hybrid Simulation Method

- Hybrid MHD and Particle code (HYM)
- Initial value code in tokamak geometry
- Thermal plasma: single fluid resistive MHD model
- Beam ions: full orbit kinetic particles with δF scheme
 - Captures Doppler-shifted cyclotron resonance which drives the modes
- Equilibrium includes fast ion effects self-consistently⁵
- Thermal plasma and beam ions coupled through current in momentum equation

$$\rho \frac{d\mathbf{V}}{dt} = -\nabla \mathbf{P} + \underbrace{(\mathbf{J} - \mathbf{J}_{\mathbf{b}}) \times \mathbf{B} - \mathbf{e} \mathbf{n}_{b} (\mathbf{E} - \eta \delta \mathbf{J})}_{\text{current coupling}} + \mu \Delta \mathbf{V}$$

⁵E.V. Belova *et al.* Phys. Plasmas **10**, 3240 (2003)

Fast Ion Distribution Model

- Equilibrium distribution $F_0 = F_1(v)F_2(\lambda)F_3(p_{\phi})$
 - Trapping parameter $\lambda = \mu B_0/\mathcal{E} \approx v_\perp^2/v^2$

$$F_{1}(v) = \frac{1}{v^{3} + v_{c}^{3}}$$

$$F_{2}(\lambda) = \exp\left(-\left(\lambda - \lambda_{0}\right)^{2} / \Delta \lambda^{2}\right)$$

$$F_{3}(p_{\phi}) = \left(\frac{p_{\phi} - p_{\min}}{m_{i}R_{0}v - q_{i}\psi_{0} - p_{\min}}\right)^{\sigma}$$
for $v < v_{0}$ and $p_{\phi} > p_{\min}$

- NSTX: $v_0/v_A \lesssim 5$, $\lambda_0 = 0.5 0.7$ for original beam
- NSTX-U: $v_0/v_A \lesssim$ 2, $\lambda_0 = 0$ for new beam
- Parameters matched to TRANSP ($\Delta\lambda \approx 0.3$)

Hybrid Simulations Predict Rich Mixture of CAEs/GAEs

• Parameter scan of injection geometry (λ_0) and velocity (v_0/v_A) reveals complicated stability boundaries for different mode types⁶

- Simulated |n| = 1 - 12 separately

- GAEs excited at lower beam energy $(v_0/v_A \gtrsim 2.5)$ than CAEs $(v_0/v_A \gtrsim 4)$, typically with larger growth rates
- co-GAEs excited with very tangential beams
 - Anomalous cyclotron resonance ($\ell = -1$)
 - May exist in future NSTX-U experiments

- Colored dot: growth rate of most unstable mode in each simulation
- White dot: no unstable modes

⁶J.B. Lestz et al. arXiv:2101.05976 (2021)

Outline

- Introduction: Alfvén Eigenmodes Linked to Anomalous Electron Transport
- Hybrid Simulations Reveal Complicated Stability Boundaries
- Simple Analytic Theory Explains Simulations
- Theory Yields Experimental Insights
- Injecting Multiple Beams Can Control Alfvén Eigenmodes

Simple Conditions Derived for Net Drive

Fast ion drive depends on gradients of the distribution

$$\gamma \propto \int h(\lambda, \mathbf{v}) \left[\left(\frac{\ell \omega_{ci}}{\omega} - \lambda \right) \frac{\partial}{\partial \lambda} + \frac{\mathbf{v}}{2} \frac{\partial}{\partial \mathbf{v}} \right] f_b(\lambda, \mathbf{v}) d^2 \mathbf{v} > 0 \text{ for instability}$$

• cntr-propagating CAE/GAEs ($\ell = +1$) driven by $\partial f_b/\partial \lambda > 0$

- $v_0 < v_{\parallel,
m res}/(1-\lambda_0\,\langlear{\omega}_{ci}
angle)^{3/4}$ necessary for instability 7

• co-propagating CAEs ($\ell = 0$) driven by $\partial f_b / \partial \lambda < 0$

 $- v_0 > v_{\parallel,\text{res}} / \left(1 - \frac{\langle \bar{\omega}_{ci} \rangle}{2} \left[\lambda_0 + \sqrt{\lambda_0^2 + 8\Delta\lambda^2/3}\right]\right)^{5/8} \text{ necessary for instability}^8$

• Due to resonance condition,
$$v_{\parallel,\text{res}}(\omega/\omega_{ci}, k_{\parallel}/k_{\perp}) = (\omega - \ell \langle \omega_{ci} \rangle)/k_{\parallel}$$

⁸J.B. Lestz et al. Phys. Plasmas 27, 022512 (2020)

⁷J.B. Lestz et al. Phys. Plasmas 27, 022513 (2020)

Analytic Bounds Explain Simulation Results

- Numerically integrate full analytic expression for growth rate to predict instability
 - red: net fast ion drive, blue: net fast ion damping
 - gray: insufficient beam velocity for resonant interaction

Analytic Bounds Explain Simulation Results

- Numerically integrate full analytic expression for growth rate to predict instability
 - red: net fast ion drive, blue: net fast ion damping
 - gray: insufficient beam velocity for resonant interaction
- black curve: approximate analytic conditions reproduce numerical calculation

Analytic Bounds Explain Simulation Results

- Numerically integrate full analytic expression for growth rate to predict instability
 - red: net fast ion drive, blue: net fast ion damping
 - gray: insufficient beam velocity for resonant interaction
- black curve: approximate analytic conditions reproduce numerical calculation
- gold: unstable modes from HYM simulations agree with theory

Beam Parameters Determine Most Unstable Modes

- cntr-GAEs prefer $\lambda_0 \rightarrow 1$, whereas co-GAEs require small λ_0 for instability
 - Driven by opposite sign of $\partial f_0/\partial\lambda$
- co-CAEs are less unstable due to a smaller coefficient multiplying growth rate
 - $\gamma_{\ell=0} \sim (\omega/\omega_{ci})\gamma_{\ell=\pm 1}$
- cntr-GAEs can be destabilized at small v_0/v_A
 - co-GAEs require large Doppler shift
 - co-CAEs suffer relatively large $\partial f_0 / \partial v$

Outline

- Introduction: Alfvén Eigenmodes Linked to Anomalous Electron Transport
- Hybrid Simulations Reveal Complicated Stability Boundaries
- Simple Analytic Theory Explains Simulations
- Theory Yields Experimental Insights
- Injecting Multiple Beams Can Control Alfvén Eigenmodes

Agreement Between NSTX Experiments, Theory, and Simulations

- · For fixed NBI parameters, instability conditions constrain the spectrum of modes
- Cross-comparison with NSTX database of cntr-GAEs and co-CAEs demonstrates greater than 80% agreement with theory
- blue: NSTX observations, red: HYM simulations

gray: unstable region predicted by theory

Theory Explains Previous Observations on DIII-D

- DIII-D low field experiments ($v_0/v_A \approx 1.5$) observed cntr-modes with $\omega/\omega_{ci} \approx 0.6$
 - Tentatively identified as CAEs, with unexplained $k_{\perp}\rho_{\perp b} < 0.8$
 - Density scaling also not Alfvénic, conflicting with dispersion relation⁹

⁹W.W. Heidbrink et al. Nucl. Fusion 46, 324 (2006)

Theory Explains Previous Observations on DIII-D

- DIII-D low field experiments ($v_0/v_A pprox$ 1.5) observed cntr-modes with $\omega/\omega_{ci} pprox$ 0.6
 - Tentatively identified as CAEs, with unexplained $k_{\perp}\rho_{\perp b} < 0.8$
 - Density scaling also not Alfvénic, conflicting with dispersion relation⁹
- Theory predicts narrow range of unstable GAEs: $\frac{1}{1+v_0/v_A} < \frac{\omega}{\omega_{ci}} < \frac{1}{1+v_0/v_A(1-\lambda_0)^{3/4}}$
 - Compatible with any value of $k_{\perp}\rho_{\perp b}$
 - Weaker density scaling agrees with data
- Theory predicts higher frequencies for larger λ_0
- Unstable CAEs would require much higher than observed frequencies

High frequency observations in DIII-D may be more consistent with GAEs

⁹W.W. Heidbrink et al. Nucl. Fusion 46, 324 (2006)

Why Are cntr-GAEs Preferred Over cntr-CAEs at Small v_0/v_A ?

- Despite similar instability conditions, cntr-GAEs more common than cntr-CAEs
 - In NSTX ($v_0/v_A = 2-5$), both cntr-GAEs and cntr-CAEs were observed
 - In early NSTX-U ($v_0/v_A = 1.5 2.5$), almost exclusively cntr-GAEs

MAST had similar range, but different beam geometry - identified as CAEs

- In DIII-D ($v_0/v_A = 0.5 1$), cntr-GAEs are most consistent with theory
- In AUG ($v_0/v_A = 0.4 0.6$), cntr-GAEs seem more likely as well
- **Explanation**: theory predicts cntr-GAEs have growth rates 20 50 times larger than CAEs
 - CAEs also have an order of magnitude larger electron Landau damping rate than GAEs
 - At low v_0/v_A , this could stabilize CAEs

Outline

- Introduction: Alfvén Eigenmodes Linked to Anomalous Electron Transport
- Hybrid Simulations Reveal Complicated Stability Boundaries
- Simple Analytic Theory Explains Simulations
- Theory Yields Experimental Insights
- Injecting Multiple Beams Can Control Alfvén Eigenmodes

GAE Suppression Discovered on NSTX-U

NSTX-U found robust suppression of cntr-GAEs with addition of new off-axis/tangential beams¹⁰

¹⁰E.D. Fredrickson *et al.* Phys. Rev. Lett. **118**, 265001 (2017)

Analytic Theory Explains cntr-GAE Stabilization on NSTX-U

- Tangential injection flips sign of $\partial f_b/\partial \lambda \rightarrow$ damping
- **Stabilization**: damping from new beam balances drive from original beam
 - 7% of fast ions in new beam predicted for complete stabilization of cntr-GAEs
 - Very close to experiment and HYM simulations¹¹
- Surprisingly, simulations show that tangential injection also stabilizes co-CAEs
 - Requires $\sim 25\%$ fast ions in new beam
 - Theory predicts that very perpendicular injection should also stabilize co-CAEs, challenging to verify

Stabilization Techniques for Studying Electron Transport

- 1. Add a new beam in a different geometry (increase damping from $\partial f_b/\partial \lambda$)
 - To suppress cntr-GAEs/CAEs, add a more tangential beam
 - explains NSTX-U GAE suppression observations
 - To suppress **co**-CAEs, add a very tangential <u>or</u> perpendicular beam
 - driven by $\partial f_b/\partial \lambda < 0$, opposite condition for cntr-CAEs/GAEs
 - near marginal stability, large radiative damping is sensitive to beam distribution
 - To suppress either, counter-inject a new beam
 - Accesses new resonance for same mode, with opposite contribution to drive
- 2. Add a new beam at a different voltage without changing geometry
 - Adding a beam at a lower voltage should suppress co-CAEs
- 3. Add resonant particles which are stabilizing ($\lambda > \lambda_0$ for cntr-GAEs)
 - Can be achieved by lengthening the tail of the distribution RF heating?

Testable Predictions for CAEs/GAEs in NSTX-U

Test if *T_e* flattening responds to GAE stabilization with off-axis/tangential beams

Testable Predictions for CAEs/GAEs in NSTX-U

- 1. Test if *T_e* flattening responds to GAE stabilization with off-axis/tangential beams
- 2. Test co-CAE stabilization with tangential NBI
 - Requires low field (NSTX-like v_0/v_A) to excite co-CAEs at all
 - Predicted by simulations but beyond the scope of the simple theory.

Testable Predictions for CAEs/GAEs in NSTX-U

- 1. Test if T_e flattening responds to GAE stabilization with off-axis/tangential beams
- 2. Test co-CAE stabilization with tangential NBI
 - Requires low field (NSTX-like v_0/v_A) to excite co-CAEs at all
 - Predicted by simulations but beyond the scope of the simple theory.
- 3. Try to excite high frequency co-GAEs, which were not previously observed
 - Requires low field and tangential NBI
 - Once excited, can also test if they can be suppressed by perp. NBI, as predicted

Summary

- CAEs/GAEs were investigated in NSTX(-U) with hybrid simulations and theory
- A simple analytic theory of sub-cyclotron Alfvén eigenmode instability has been developed for realistic NBI distributions
 - Perpendicular injection: drives cntr-propagating CAEs/GAEs and damps co-modes
 - Tangential injection: damps cntr-CAEs/GAEs and can drive or damp co-modes
 - Explains experimental observations and simulations of CAE/GAE excitation and stabilization in multiple devices (NSTX, NSTX-U, DIII-D, AUG)
- **Impact**: theory for control of CAEs/GAEs will enable investigation of their role in electron energy transport and help identify transport mechanisms
- Future Applications: (1) project to ITER (α distribution, multiple ion species),
 (2) try similar approach to interpret ion cyclotron emission (ICE), and
 (3) model sub-cyclotron instabilities driven by runaway electrons¹²

¹²C. Liu *et al*. Nucl. Fusion **61**, 036011 (2021)

Backup Slides

Compressional Alfvén Eigenmodes (CAE)

- Ideal magnetosonic mode in toroidal geometry
 - Compressional polarization
 - In uniform, low β limit, $\omega = k v_A$
- Localized by 2D wave equation

$$\begin{split} \left[\nabla_{\perp}^{2} - V_{\text{eff}}(r,\theta) \right] \delta B_{\parallel} &= 0 \\ V_{\text{eff}}(r,\theta) &= k_{\parallel}^{2} - \frac{\omega^{2}}{v_{A}^{2}} \approx \left(\frac{n}{R}\right)^{2} - \left(\frac{\omega}{v_{A}}\right)^{2} \end{split}$$

• V_{eff} = 0 coincides with Alfvén resonance, where CAE couples to kinetic Alfvén wave

n = 4 CAE calculated by HYM. δB_{\parallel}

corresponds to the CAE. Coherent δB_{\perp} ,

 δE_{\parallel} structures show the KAW.

Global Alfvén Eigenmodes (GAE)

- Discrete shear Alfvén eigenmode solutions may exist below minimum of Alfvén continuum
 - Approximate dispersion $\omega \leq [k_{\parallel}(r)v_{A}(r)]_{min}$
 - Weakly damped due to separation from continuum
- Dominant shear polarization: $\delta B_{\perp} \gg \delta B_{\parallel}$
 - In NSTX conditions, also have large compressional component $\delta B_{||} \approx \delta B_{\perp}$ near edge
- CAEs/GAEs routinely observed in NSTX with |n| = 3 12 and $\omega/\omega_{ci} \approx 0.1 1.2$
 - ICE with $\omega > \omega_{ci}$ also present

GAE calculated by NOVA

HYM Physics Model

Fluid Thermal Plasma

$$ho rac{doldsymbol{V}}{dt} = -
abla oldsymbol{P} + (oldsymbol{J} - oldsymbol{J}_b) imes oldsymbol{B} \ - oldsymbol{e} n_b (oldsymbol{E} - \eta \delta oldsymbol{J}) + \mu \Delta oldsymbol{V}$$

Kinetic Fast Ions

$$egin{array}{ll} rac{dm{x}}{dt} &= m{v} \ rac{dm{v}}{dt} &= rac{m{q}_i}{m_i} \left(m{E} - \eta\deltam{J} + m{v} imesm{B}
ight) \end{array}$$

- ρ , V, P are plasma mass density, velocity, and pressure
- n_b , J_b are beam ion density and current ($n_b \ll n_e$, though $J_b \approx J_{th}$)

Realistic Simulations Motivate Development of Theory

- HYM simulations accurately model CAEs/GAEs in NSTX(-U) experiments and recover eigenmodes from spectral codes
- Theory is needed to interpret simulation results and improve understanding to develop predictive capability

HYM Provides Input for Energy Transport Calculations

- Theories of CAE/GAE-induced electron energy transport require assumptions about the mode properties (frequency, amplitude, polarization, structure, *etc.*)
- HYM simulations generate realistic mode structures, beyond ideal MHD

cntr-GAE Mode Structure from HYM

co-GAE Mode Structure from HYM

co-GAE n = 8, $\lambda = 0.1$, v = 5.3

Linear Simulation Stability Results

Theory Applied to Understand Experiments and Simulations

- Local linear growth rate derived for realistic NBI distribution
 - Uncovers new instability regime necessary to explain GAE excitation in NSTX-U
- Goal: simple expressions for fast ion drive depending on
 - 1. fast ion distribution parameters $(\lambda_0, v_0/v_A)$
 - 2. mode parameters $(\omega/\omega_{ci}, k_{\parallel}/k_{\perp})$
- Approach: restrict to 2D velocity space to avoid assumptions about equilibrium profiles, mode structure, particle orbits, *etc.*
 - Does not include contribution from $\partial f_0 / \partial p_\phi$
- Provides upper bound on net growth rate, since neglecting bulk damping sources
 - Reminder: $\gamma_{\text{net}} = \gamma_{\text{EP}} \gamma_{\text{th,damp}}$

Growth Rate Calculated for Anisotropic Beam Distribution

• For a beam-like distribution, with $x\equiv v_{\perp}^2/v^2,\, u\equiv v^2/v_0^2=v_{\parallel,{\rm res}}^2/v_0^2(1-x)$

$$\frac{\gamma}{\omega_{ci}} \propto -\sum_{\ell} \int_{0}^{1-v_{\parallel, \text{res}}^{2}/v_{0}^{2}} \underbrace{\frac{x}{(1-x)^{2}}}_{\ell} \underbrace{\mathscr{J}_{\ell}^{m} \left(\frac{k_{\perp} v_{\parallel, \text{res}}}{\omega_{ci}} \sqrt{\frac{x}{1-x}}\right)}_{\text{non-negative}} \underbrace{\frac{e^{-(x-\lambda_{0} \langle \bar{\omega}_{ci} \rangle)^{2}/\Delta \lambda^{2} \langle \bar{\omega}_{ci} \rangle^{2}}{1+(4u)^{3/2}}}_{\frac{\partial f_{b}/\partial \lambda \text{ drive/damping}}{(\text{has sign of } x - \lambda_{0} \langle \bar{\omega}_{ci} \rangle)} \left(\frac{\ell}{\bar{\omega}} - x\right)}_{\text{non-negative}} + \underbrace{\frac{3}{2} \left(1 - \frac{1}{1+(4u)^{3/2}}\right)}_{\frac{\partial f_{b}/\partial \mathcal{E} \text{ damping}}{(\text{negligible for } \ell \neq 0)}}_{\ell} dx$$

• Can integrate numerically, but further analytic progress requires approximation

Approximations Necessary to Derive Instability Conditions

- 1. Growth rate dominated by anisotropy for $\ell \neq 0$ resonances $\left(\frac{\omega_{cl}}{\omega} \frac{\partial f_0}{\partial \lambda} \gg \frac{v}{2} \frac{\partial f_0}{\partial v}\right)$
- 2. "Wide beam approximation" for $\Delta x \approx 0.3 \left(\frac{d}{dx} e^{-(x-x_0)^2/\Delta x^2} \approx -2(x-x_0)/\Delta x^2 \right)$
- 3. Small (or large) $k_{\perp}\rho_{\perp b}$ expansion of finite Larmor radius Bessel function terms
- 4. Neglect slowing down velocity dependence (weak dependence)

Approximations Necessary to Derive Instability Conditions

- 1. Growth rate dominated by anisotropy for $\ell \neq 0$ resonances $\left(\frac{\omega_{cl}}{\omega} \frac{\partial f_0}{\partial \lambda} \gg \frac{v}{2} \frac{\partial f_0}{\partial v}\right)$
- 2. "Wide beam approximation" for $\Delta x \approx 0.3 \left(\frac{d}{dx} e^{-(x-x_0)^2/\Delta x^2} \approx -2(x-x_0)/\Delta x^2 \right)$
- 3. Small (or large) $k_{\perp}\rho_{\perp b}$ expansion of finite Larmor radius Bessel function terms
- 4. Neglect slowing down velocity dependence (weak dependence)

Define $\eta = v_{\parallel, \rm res}^2 / v_0^2$, then for $k_\perp \rho_{\perp b} \lesssim 1$ and $\ell = 1$, the growth rate is proportional to

$$\gamma \lesssim -\int_0^{1-\eta} \frac{x(x-x_0)}{(1-x)^2} dx > 0 \longrightarrow x_0 > \frac{1-\eta^2 + 2\eta \log \eta}{1-\eta + \eta \log \eta}$$

Approximations Necessary to Derive Instability Conditions

- 1. Growth rate dominated by anisotropy for $\ell \neq 0$ resonances $\left(\frac{\omega_{cl}}{\omega} \frac{\partial f_0}{\partial \lambda} \gg \frac{v}{2} \frac{\partial f_0}{\partial v}\right)$
- 2. "Wide beam approximation" for $\Delta x \approx 0.3 \left(\frac{d}{dx} e^{-(x-x_0)^2/\Delta x^2} \approx -2(x-x_0)/\Delta x^2 \right)$
- 3. Small (or large) $k_{\perp}\rho_{\perp b}$ expansion of finite Larmor radius Bessel function terms
- 4. Neglect slowing down velocity dependence (weak dependence)

Define $\eta = v_{\parallel, \rm res}^2 / v_0^2$, then for $k_\perp \rho_{\perp b} \lesssim 1$ and $\ell = 1$, the growth rate is proportional to

$$\begin{split} \gamma & \approx -\int_0^{1-\eta} \frac{x(x-x_0)}{(1-x)^2} dx > 0 \longrightarrow x_0 > \frac{1-\eta^2 + 2\eta \log \eta}{1-\eta + \eta \log \eta} \underbrace{\approx 1-\eta^{2/3}}_{1\% \text{ error for } 0 < \eta < 1} \\ & \Longrightarrow v_0 < \frac{v_{\parallel, \text{res}}}{(1-x_0)^{3/4}} \end{split}$$

Serendipitous Approximations

Where did this approximation come from?

$$f(x) = \frac{1 - x^2 + 2x \log x}{1 - x + x \log x} \approx 1 - x^{2/3}$$

Accurate on 0 < x < 1 to within 1%!

• Assume $f(x) \approx 1 - x^p$

- Preserves smoothness, convexity, and monotonicity

$$- f(0) = 1$$
 and $f^{(n)}(0) \to (-1)^n \infty$ for 0

- f(1) = 0 and match f'(1) = -p

- Correct boundary behavior + sufficiently smooth function → accurate global approximation
 - Same procedure used many times in this work

Gradients in p_{ϕ} Destabilize Co-Propagating Modes

- Local theory analysis neglected $\partial f_0 / \partial p_\phi$
- Effect can be determined heuristically by comparing to nonlocal theory¹³

$$\gamma \propto \int d\Gamma \left[\left(\frac{\ell}{\bar{\omega}} - \lambda \right) \frac{\partial f_0}{\partial \lambda} + \mathcal{E} \frac{\partial f_0}{\partial \mathcal{E}} + \frac{n}{\bar{\omega}} \frac{\mathcal{E}}{\omega_{ci}} \frac{\partial f_0}{\partial \boldsymbol{p}_{\phi}} \right]$$

- For non-hollow distributions, ∂f₀/∂p_φ > 0
 → sign of *n* determines contribution
 - co-modes are driven, cntr-modes are damped
- HYM simulations that artificially remove ∂f₀/∂p_φ contribution confirm its effect for co- vs cntr-GAEs

¹³A.N. Kaufman *et al.* Phys. Fluids **15**, 1063 (1972)

CAE/GAE Coupling Can Alter Most Unstable Modes

• Including two fluid effects, dispersions are coupled, modifying the polarization

$$1 - \frac{k_{\parallel}^2 v_A^2}{\omega^2} \left(1 - \frac{\omega^2}{\omega_{ci}^2} \right) \left| \left| 1 - \frac{k^2 v_A^2}{\omega^2} \left(1 - \frac{\omega^2}{\omega_{ci}^2} \right) \right| = \frac{\omega^2}{\omega_{ci}^2}$$

- Changes growth rate, most unstable parts of spectrum
 - Most important for cntr-CAEs, also co-CAEs at smaller v_0/v_A
- $\ell = 0$ co-GAE can not exist without this coupling

Continuum/Radiative Damping is Dominant in Simulations

- Beam density scan in simulations shows $\gamma_{\rm damp}/\gamma_{\rm drive} \approx 20-60\%$
- Attributed to continuum/radiative damping since it is insensitive to viscosity and resistivity
- Electron damping (absent in simulations) calculated analytically for unstable modes
 - GAE electron damping rates are very small $\gamma_{damp}/\gamma_{drive} \sim 1\%$
 - CAE electron damping could be large enough to stabilize some modes near marginal stability

GAE Frequency Depends Strongly on v_0/v_A in Simulations

- GAE frequency changes dramatically with v_0/v_A for all *n* in linear HYM simulations: change of 20 50% or 100 500 kHz
- Change is continuous to at least $\Delta v_0 = 0.1 v_A$ resolution
 - Uncharacteristic of excitation of distinct MHD modes with discrete frequencies
- Sign of change in frequency is consistent with resonance condition

GAE Mode Structure Nearly Independent of Frequency

- Mode structure does not change qualitatively as frequency changes (mode numbers unchanged)
- Slight differences: peak location moves gradually inwards, mode becomes slightly elongated
- Frequency shifts \approx 20% from $\omega/\omega_{ci} =$ 0.24 to 0.29 ($\Delta\omega =$ 125 kHz) due to 15% change in v_0/v_A

This is unusual behavior for MHD modes!

¹⁴J.B. Lestz *et al.* Phys. Plasmas **25**, 042508 (2018)

	Equilibrium Effect	Phase Space Effect	Total Effect
Equil:	Self-cons.	MHD only	Self-cons.
Vary:	n_b/n_e	v_0/v_A	v_0/v_A
Fix:	v_0/v_A	n_b/n_e	n_b/n_e

Equil. and EP phase space effects are nearly linear

$$\frac{d\omega}{d\mathcal{J}} \approx \left(\frac{\partial\omega}{\partial\mathcal{J}}\right)_{EQ} + \left(\frac{\partial\omega}{\partial\mathcal{J}}\right)_{EP} = n_e v_A \left[\frac{1}{v_0}\frac{\partial\omega}{\partial n_b} + \frac{1}{n_b}\frac{\partial\omega}{\partial v_0}\right]$$

Simulations show that $\Delta \omega_{EP} \gg \Delta \omega_{EQ}$, which may indicate the existence of the first EPM driven by a cyclotron resonance: the energetic-particle-modified GAE

	Equilibrium Effect	Phase Space Effect	Total Effect
Equil:	Self-cons.	MHD only	Self-cons.
Vary:	n_b/n_e	v_0/v_A	v_0/v_A
Fix:	v_0/v_A	n_b/n_e	n_b/n_e

Equil. and EP phase space effects are nearly linear

$$\frac{d\omega}{d\mathcal{J}} \approx \left(\frac{\partial\omega}{\partial\mathcal{J}}\right)_{EQ} + \left(\frac{\partial\omega}{\partial\mathcal{J}}\right)_{EP} = n_e v_A \left[\frac{1}{v_0}\frac{\partial\omega}{\partial n_b} + \frac{1}{n_b}\frac{\partial\omega}{\partial v_0}\right]$$

where $\mathcal{J} \equiv \frac{n_b}{n_e}\frac{v_0}{v_A}$

Growth Rate Calculation May Explain Frequency Change

- The GAE growth rate is maximized at a specific value $v_{\parallel,\text{res}}^2/v_0^2 = 0.36 \equiv \eta_{\text{max}}$
 - Independent of v_0/v_A and $|k_{\parallel}/k_{\perp}|$
- The most unstable frequency changes with v_0/v_A due to the resonance condition
 - $-\omega = \langle \omega_{ci}
 angle + v_0 k_{\parallel} \sqrt{\eta_{\max}}$
- Future work: verify with non-perturbative calculation

Growth Rate Calculation May Explain Frequency Change

- The GAE growth rate is maximized at a specific value of $v_{\rm ||.res}^2/v_0^2=0.36\equiv\eta_{\rm max}$
 - Independent of v_0/v_A and $|k_{\parallel}/k_{\perp}|$
- The most unstable frequency changes with v_0/v_A due to the resonance condition
 - Scaling: $\omega \approx \langle \omega_{ci}
 angle + rac{n v_0}{R} \sqrt{\eta_{\max}}$
- NSTX observations of ω/ω_{ci} vs *n* are consistent with this trend¹⁴
 - Provides clues but not confirmation without careful measurements of mode structure
- TBD: verify with non-perturbative calculation

¹⁵S.X. Tang *et al.* 2017 TTF Meeting

Potential Experimental Support for EP-GAEs

- Experimental analysis of many NSTX discharges¹⁵ shows cntr-GAE frequency *decrease* with increasing |n|
 - Opposite trend expected from dispersion $\omega = |k_{\parallel}| v_A \propto |n|$
 - Consistent with conclusion that resonant particles determine frequency
- Provides clues but not confirmation without careful measurements of *m* to determine mode structure

¹⁶S.X. Tang et al. 2017 TTF Meeting

CAEs/GAEs May Be Present in Burning Plasmas

- ITER will have super-Alfvénic NBI and alpha particles ($v_0/v_A = 1.5 2$)
- Anisotropy of alphas near the edge could destabilize cntr-GAEs/CAEs
 - Similar to NSTX(-U) beam parameters
- ITER NBI distribution has $\lambda_0 = 0.3 0.8$ depending on radius
 - Could be either destabilizing or stabilizing (NSTX-U multi-beam suppression)

• **Open question**: if the modes are excited, will the anomalous electron transport also be present in ITER or is it unique to spherical tokamaks?

CAE/GAE-Induced Ion Heating Was Also Explored on NSTX

- Anomalously high T_i > T_e was observed in some NBI-dominated NSTX discharges¹⁶
- Proof-of-principle stochastic heating of ions by CAEs shown in test particle simulations¹⁷
- Subsequent experimental analysis¹⁸ found CAE to thermal ion power transfer to be insufficient to explain the surplus $T_i - T_e$
- Not yet fully resolved

¹⁷D.A. Gates *et al.* Phys. Rev. Lett. **87**, 205003 (2001)
 ¹⁸N.N. Gorelenkov *et al.* Nucl. Fusion **43**, 228 (2003)
 ¹⁹E.D. Fredrickson *et al.* Phys. Plasmas **9**, 2069 (2002)

Open Questions

- 1. Which transport mechanism is the dominant cause of anomalous flat T_e profiles?
- 2. Will CAEs/GAEs be unstable in ITER? Will they induce anomalous transport?
- 3. What is the dominant mechanism for co-CAE stabilization by tangential injection?
- 4. Can the analytic stability boundaries be generalized to $\omega \gg \omega_{ci}$ in order to interpret ion cyclotron emission (ICE)?

