Microstability in fusion plasmas with steep temperature gradients

0.0

Gyrokinetic simulation of turbulent density perturbations versus a radial ($\Delta \widetilde{r}$) and poloidal (θ) coordinate in a JET-ILW pedestal.

PPPL Seminar, May 3, 2021

Jason Parisi

Culham Centre for Fusion Energy University of Oxford

Thanks to my collaborators:

Felix Parra, Colin Roach, Michael Hardman, Michael Barnes, Denis St-Onge, Justin Ball, David Hatch, Bill Dorland, Ian Abel, David Dickinson, Carine Giroud, Ben Chapman, Jon Hillesheim, Plamen Ivanov, Nobuyuki Aiba

- The pedestal
- Linear pedestal physics
- Nonlinear pedestal physics
- Stellarator physics
- Discussion

Outline

Main conclusions

- bottom of the poloidal cross section.
- Steep temperature gradients significantly increase the range of scales to be resolved, making even single kinetic species gyrokinetic simulations 'multiscale'.
- Nonlinear gyrokinetic simulations need to be run for sufficiently 'long' to capture slowest growing modes in box, which modify fluctuations/transport at 'long' times.

• Steep temperature gradients can cause ETG turbulence to be located at the top and

The pedestal

The pedestal

gradients. Appears once external heating crosses threshold (Wagner, 1982).

• Region at plasma edge with significantly increased equilibrium temperature and density

• For geometry in this work, we use a Miller equilibrium from a steep gradient region in a JET-ILW discharge. Here, $R/L_{Te} \simeq 130$, where R is major radius and $L_{Te} = |\nabla \ln T_{e}|^{-1}$.

1.00	
0.99	
0.98	×
0.97	l flu
0.96	oida
0.95	l pol
0.94	lizec
0.93	rma
0.92	ПС
0.91	
0.00	

Nomenclature

- Use $\{x, y, \theta\}$ real space coordinates: x radial, y field line label, θ parallel ballooning arclength.
- Perpendicular wavenumber k_{\perp} , with magnetic shear \hat{s} , and effective radial wavenumber $K_x \approx k_v \hat{s} \theta$,

$$k_{\perp} \approx \sqrt{K_x^2 + k_y^2} \approx k_y \sqrt{(\hat{s}\theta)^2 + 1}$$
.

drift is $\mathbf{v}_{Me} = (\hat{\mathbf{b}} \times \nabla \ln B)(v_{\parallel}^2 + v_{\perp}^2/2)/\Omega_e, \phi^{tb}$ is the turbulent electrostatic potential, and $\hat{\mathbf{b}} = \mathbf{B}/B$.

a) Coordinate system.

• Frequencies, $\omega_{Me} = \mathbf{k}_{\perp} \cdot \mathbf{v}_{Me}$, $\omega_{*e}^{T} = \nabla \ln(T_{e}) \cdot \mathbf{v}_{E}^{tb} T_{e} / e \phi^{tb} = k_{v} v_{te} \rho_{e} / L_{Te}$, where the electrostatic magnetic

- toroidal ETG modes are very different to core toroidal ETG modes.

• Zoo of pedestal microinstabilities: KBM, ITG, MTM, ETG (Dickinson, 2013; Hatch, 2016; Kotschenreuther, 2019; Pueschel, 2019; Parisi, 2020; Guttenfelder, 2021).

• We focus on toroidal ETG modes, which dominate in steep gradient region of linear and nonlinear JET-ILW pedestal discharges we have investigated. Note: these pedestal

• We care about these toroidal ETG modes because they dominate fluctuations and transport in simulations we have performed (and because they are interesting!).

Motivation Cartoon of H-mode pedestal bifurcation

Temperature gradient

Hinton1990

Motivation Cartoon of H-mode pedestal bifurcation

2 possible ways to get to H-mode transport 1) H-mode transport less stiff

Temperature gradient

Hinton1990

Motivation Cartoon of H-mode pedestal bifurcation

2 possible ways to get to H-mode transport

Temperature gradient

Hinton1990

1) H-mode transport less stiff 2) Higher linear critical gradients

Motivation Cartoon of H-mode pedestal bifurcation

2 possible ways to get to H-mode transport

Temperature gradient

Pedestal toroidal ETG modes satisfy 2), and possibly 1) \rightarrow candidates for electron pedestal transport.

Hinton1990

1) H-mode transport less stiff 2) Higher linear critical gradients

Linear physics

• Fast growing toroidal ETG modes require balance of ExB drift frequency $\omega_{*_{\rho}}^{T}$ and magnetic drift frequency $\omega_{\kappa_{\rho}}$,

$$\frac{\omega_{*e}^{T}}{\omega_{\kappa e}} \sim 1$$

• Because of steep pedestal gradients, require perpendicular wavenumber $k_{\perp} \simeq k_v \hat{s} \theta \gg k_v$,

$$\frac{\omega_{*e}^{T}}{\omega_{\kappa e}} \sim \frac{k_{y}}{k_{\perp}} \frac{R}{L_{Te}} \sim \frac{1}{\hat{s}\theta} \frac{R}{L_{Te}} \sim 1, \text{ so}$$

where \hat{s} is global magnetic shear, θ is the poloidal ballooning angle, R is the major radial distance to mode, $L_{Te} = |\partial_r \ln T_e|^{-1}$ is a flux function, and r is the minor radius at the midplane.

• This causes instability to live away from outboard (and usually near top/bottom of flux surface due to flux expansion and drifts).

so $\theta \sim \frac{1}{\hat{s}} \frac{R}{L_{T}}$, Κ A flux surface with coordinates

 R, Z, θ .

- We also expect the scales for toroidal instability to satisfy $k_\perp \rho_e \sim 1$ due to FLR damping.
- Using (from our previous slide)

we find

 $k_y \rho_e \sim k_\perp \rho_e \frac{L_{Te}}{P}$

and therefore using $k_\perp \rho_e \sim 1$ we find that strongly driven toroidal ETG turbulence satisfies

 $k_y \rho_e \sim \frac{L_{Te}}{R}$.

• To summarize, toroidal ETG modes in steep temperature gradients satisfy:

Relatively large radial wavenumber: $k_{\perp} \gg k_y$ (follows from $R/L_{Te} \gg 1$)

Far along a field line:

$$\theta \sim \frac{1}{\hat{s}} \frac{R}{L_{Te}}$$
 (follows from $k_{\perp} \gg k_y$)

Long wavelength in binormal direction: $k_y \rho_e \sim \frac{L_{Te}}{R}$ (follows from $k_\perp \rho_e \sim 1$)

• There are important additional effects that we will skip, but you can ask me/read about them in (Parisi, 2020).

Linear pedestal physics review Important to resolve all θ locations in pedestal simulations

• Toroidal ETG requires $\theta \sim \frac{1}{\hat{s}} \frac{R}{L_{Te}}$.

- Slab ETG branch cannot extend too far in θ , otherwise ω_{Me} dominates. • Expect slab and toroidal ETG turbulence to have highly distinct characters!

Toroidal ETG mode location

shapes linearly and nonlinearly...

linear simulation:

• Toroidal ETG instability lives roughly at the **top/bottom** of flux surface in variety of

• Why does mode live at top/bottom?

• Recall, mode needs a very fast magnetic drift frequency $\omega_{\kappa e}$ because ω_{*e}^{T} is large in pedestal!

- Recall, mode needs a very fast magnetic drift frequency $\omega_{\kappa e}$ because $\omega_{*_{\rho}}^{T}$ is large in pedestal!
- The quantity $\omega_{\kappa e} = \mathbf{k}_{\perp} \cdot \mathbf{v}_{Me}$ becomes large by radial component of $\mathbf{k}_{|}$, \mathbf{K}_{x} , becoming large!
- $\mathbf{K}_{x} \simeq k_{y} \hat{s} \theta$ becomes large as mode moves along field line away from outboard midplane.

- Recall, mode needs a very fast magnetic drift frequency $\omega_{\kappa e}$ because $\omega_{*_{\rho}}^{T}$ is large in pedestal!
- The quantity $\omega_{\kappa e} = \mathbf{k}_{\perp} \cdot \mathbf{v}_{Me}$ becomes large by radial component of \mathbf{k}_{1} , \mathbf{K}_{x} , becoming large!
- $\mathbf{K}_{x} \simeq k_{y} \hat{s} \theta$ can become large as mode moves along field line away from outboard midplane.
- Hence, mode lives near top/bottom.

- Recall, mode needs a very fast magnetic drift frequency $\omega_{\kappa\rho}$ because $\omega_{*\rho}^{T}$ is large in pedestal!
- The quantity $\omega_{\kappa e} = \mathbf{k}_{\perp} \cdot \mathbf{v}_{Me}$ becomes large by radial component of \mathbf{k}_{1} , \mathbf{K}_{r} , becoming large!
- $\mathbf{K}_{x} \simeq k_{y} \hat{s} \theta$ can become large as mode moves along field line away from outboard midplane.
- Hence, mode lives near **top/bottom**.
- Picture is slightly modified by additional subtleties such as finite Larmor radius (FLR) damping and ballooning coordinate $\theta_0 = k_x / k_y \hat{s} \dots$

No longer scale separation: trouble for nonlinear simulations.

Effect of steep gradients on scale separation

Steep gradients: we can estimate the longest scales for ETG

Effect of steep gradients on scale separation

Steep gradients: we can also estimate the longest scales for ITG

Effect of steep gradients on scale separation Scale separation in the radial direction also matters

- So far we have talked mainly about scales in k_y (binormal scales).
- Because steep temperature gradients cause $K_x \gg k_y$ for toroidal ETG mode, must ensure that nonlinear simulations have sufficient radial resolution.

Effect of steep gradients on scale separation

Core gradients: k_v and K_x typically isotropic

Slab and toroidal modes satisfy $K_x \sim k_v$

Toroidal, slab ETG

 $1/\rho_e$

 k_{v}

Effect of steep gradients on scale separation Steep gradients: k_y and K_x can be highly anisotropic

Slab and toroidal modes satisfy $K_x \sim k_y$

Core

 $K_x = k_v$

 k_{v}

Steep gradients

Slab modes satisfy $K_x \sim k_y$

Toroidal modes satisfy $K_x \gg k_v$

Slab ETG

 $1/\rho_e$

Effect of steep gradients on scale separation **Steep gradients:** k_v and K_x can be highly anisotropic

 k_{v} $1/\rho_e$

Effect of steep gradients on scale separation **Steep gradients:** k_v and K_x can be highly anisotropic Steep gradients Slab modes satisfy $K_x \sim k_v$ Toroidal modes satisfy $K_x \gg k_v$

Core Slab and toroidal modes satisfy $K_x \sim k_v$

Effect of steep gradients on scale separation **Steep gradients:** k_v and K_x can be highly anisotropic Steep gradients Slab modes satisfy $K_x \sim k_v$ Toroidal modes satisfy $K_x \gg k_v$

Some implications for nonlinear simulations:

- Need to capture wide range of k_v , K_x scales; currently impossible to perform nonlinear gyrokinetic simulations from $k_v \rho_i \sim L_{Ti}/R$ to $k_v \rho_e > 1$.
 - Simulations require good parallel resolution away from outboard midplane.
- Require simulations are 'multiscale' in time as well as space \longrightarrow run simulations sufficiently long!

Nonlinear physics

Nonlinear pedestal physics

Resolving toroidal, slab physics nonlinearly is computationally challenging

- Linear γ/k_{\perp}^{2} spectrum has strong $\theta_{0} = k_{x}/\hat{s}k_{y}$ and $k_{y}\rho_{i}$ dependence.
- Expect toroidal ETG transport a $k_y \rho_i \sim 1$ but $K_x \rho_e \sim 1$ and slab transport at $k_i \rho_i \sim k_x \rho_i \simeq \sqrt{m_i/i}$
- Toroidal mode peak away from outboard mid ine, slab near ou midplane.

Nonlinear a

large number of parallel grupolitis

Resolving toroidal, slab physics nonlinearly is computationally challenging

- Linear γ/k_{\perp}^2 spectrum has strong $\theta_0 = k_x/\hat{s}k_y$ and $k_y\rho_i$ dependence.
- Expect toroidal ETG transport at small $k_y \rho_i \sim 1$ but $K_x \rho_e \sim 1$ and slab ETG transport at $k_y \rho_e \sim K_x \rho_e \sim 1$.
- Toroidal modes peak away from outboard midplane, slab near outboard midplane.

Resolving toroidal, slab physics nonlinearly is computationally challenging

- Linear γ/k_{\perp}^2 spectrum has strong $\theta_0 = k_x/\hat{s}k_y$ and $k_y\rho_i$ dependence.
- Expect toroidal ETG transport at small $k_y \rho_i \sim 1$ but $K_x \rho_e \sim 1$ and slab ETG transport at $k_y \rho_e \sim K_x \rho_e \sim 1$.
- Toroidal modes peak away from outboard midplane, slab near outboard midplane.
- Nonlinear grid requires:

 - 'small' Δk_y but large max k_y 'small' $\Delta \theta_0$ but enough radial modes large number of parallel gridpoints
- Currently infeasible to satisfactorily resolve all of these scales nonlinearly.

Figure: γ/k_{\perp}^2 from the linear spectrum, γ is linear growth rate.

Resolving toroidal, slab physics nonlinearly is computationally challenging

• Dominant linear modes also exist at a range of θ locations, which need to be resolved!

Nonlinear simulation

Parameters

- We perform electrostatic nonlinear gyrokinetic simulations using stella (Barnes, 2019). • Steep gradient region of JET-ILW pedestal.
- 150 poloidal modes, 70 radial modes, 128 parallel gridpoints, 64 v_{\parallel} gridpoints, 12 μ gridpoints, some hyperviscosity, kinetic ions and electrons, Miller geometry fit to JET shot 92174.
- Minimum poloidal wavenumber $k_v \rho_i = 0.7$, minimum radial wavenumber $k_x \rho_i = 1.6$.
- Run simulation for roughly 1000 a/v_{te} times (5-10 linear growth times of slowest dominant linear modes in our box).
- Health warning: the simulation I will show here is not yet in a 'steady state,' but we have run lower resolution simulations that saturate and have similar properties.

Nonlinear simulation Split into early, intermediate, and late times

- Early times: slab ETG modes dominate (high $k_v \rho_i$ slab grows faster and so saturates faster).
- Intermediate times: toroidal modes have relatively large amplitudes, appear to suppress slab.
- Late times: state with both toroidal and slab modes and reduced fluxes (simulation needs more time!).

Normalization conventions:

$$\tilde{t} = t v_{ti} / a$$
 $\widetilde{Q}_e^{tb} = Q_e^{tb} / Q_g$

$$\widetilde{\phi}^{tb} = e\phi^{tb}/T_i\rho_{*i}$$

Nonlinear results Potential and heat flux time traces

Nonlinear results Turbulence character

dominated by fast growing, high $k_v \rho_i$ modes near outboard midplane.

Figure: heat flux at 'early' times.

• Heat flux spectra changes significantly with time. At early times, heat flux

• At intermediate times, heat flux gains low $k_v \rho_i$ contribution away from outboard midplane.

Figure: heat flux at 'intermediate' times.

midplane.

Figure: heat flux at 'late' times.

• At late times, heat flux dominated by low $k_v \rho_i$ contribution away from outboard

• At late times, heat flux has significant low $k_v \rho_i$ contribution away from outboard midplane.

Figure: heat flux at 'early' times.

Figure: heat flux at 'intermediate' times.

Figure: heat flux at 'late' times.

Nonlinear results Potential perturbation movies.

Slab modes dominant and transporting heat

Intermediate

Toroidal modes still growing Toroidal suppressing slab

Late

Toroidal dominated state Toroidal modes extend across θ

Turning off magnetic drifts, heat flux doubles/quadruples.

In this equilibrium, toroidal ETG modes appear to suppress more transport than they produce.

Comparison of CBC and Pedestal ETG Pedestal turbulence is rather different to what we see in the core.

Cyclone Base Case-like ETG

Turbulence extended for a full connection length and highly ballooning

Pedestal ETG

Maximum amplitudes away from outboard midplane, and turbulent character depends on poloidal location.

Differentiating between slab and toroidal ETG turbulence

- between the different ETG modes?
- Answer: study the 'topography' of the magnetic drifts and FLR effects.

• In the messy, turbulent state of electrostatic pedestal turbulence, how do we differentiate

Differentiating between slab and toroidal ETG turbulence **FLR effects**

• We can visualize FLR effects by plotting

$$\Gamma_0(b_e) = I_0(b_e) \exp(-b_e)$$

for a range of θ and θ_0 values, where $2b_{e} = (k_{\perp}\rho_{e})^{2}$.

- Γ_0 appears in dispersion relation.
- Plotting Γ_0 versus θ and θ_0 allows us to predict where the turbulence could exist.

Differentiating between slab and toroidal ETG turbulence Hypothesis: we can predict where slab turbulence will be with plots of Γ_0 . Weak FLR damping (expect stronger fluctuations here!) $k_{y}\rho_{i} = 21.2$ Weak Strong 3 FLR damping FLR damping 0.95 1.0 $\Gamma_0(x)$ 2 0.8 $\Gamma_1(x)$ 0.85 0.6 0.75 0.4 0.65 0.2 0.55 $\Gamma_0(b_e)$ 0.0 $\hat{\theta}_0$ X Figure: Functions -1 0.35 $\Gamma_0(x)$ and $\Gamma_1(x)$. 0.25 -2 0.15 0.05 -3 -3 -2 $\overset{0}{\widetilde{\boldsymbol{ heta}}}$ 2 3 -1

(expect weaker fluctuations here!)

Slab ETG modes Experiment: run nonlinear slab ETG simulations in different geometries (ceteris paribus) Geometry 1 location 1.0

Top row: Γ_0 Bottom row: $Q_e^{tb}/(\phi^{tb})^2$.

(Parisi, 2020, thesis)

Slab ETG modes Experiment: run nonlinear slab ETG simulations in different geometries (ceteris paribus) location Geometry 1

-> FLR effects determine slab ETG turbulence distribution.

• Top row: Γ_0 , bottom row: $Q_e^{tb}/(\phi^{tb})^2$.

Geometry 2

Geometry 3

(Parisi, 2020, thesis)

Toroidal ETG modes location Magnetic drifts + FLR effects determine location of toroidal ETG turbulence

• Magnetic drifts vary strongly in the pedestal due to shaping.

• Recall that for strong instability,
$$\frac{\omega_{*e}^{I}}{\omega_{Me}}$$

Toroidal ETG modes location

Magnetic drifts + FLR effects determine location of toroidal ETG turbulence

• Regions where magnetic drifts satisfy $\omega_{*e}^T / \omega_{\kappa e} \simeq 8$ have the highest growth rate for a wide range of parallel and perpendicular wavenumbers.

```
40.5
                                 36.0
                                31.5
                                 27.0
                                 22.5
                                 18.0
                                13.5 oo
                                9.0
                                 4.5
                                0.0
             2
1
```

- Regions where magnetic drifts satisfy $\omega_{*_{\rho}}^{T}/\omega_{\kappa e} \simeq 8$ have the highest growth rate.
- $|\partial_{\theta}(\omega_{*e}\eta_{e}/\omega_{\kappa e})|$ cannot be too large, otherwise k_{\parallel} too large and kills instability.
- FLR effects cannot be too strong.

FLR unfavorable, and magnetic drifts too slow + steep.

Magnetic drifts + FLR effects determine location of toroidal ETG turbulence

• Predictions supported by simulations.

Magnetic drifts + FLR effects determine location of toroidal ETG turbulence

40.5 36.0 31.5 27.0 _____ 22.5 e^T/ω_{κe} 18.0 κe 13.5 <u></u> 9.0 4.5 0.0

Section Summary

- Nonlinear simulations in steep temperature gradient regions are hard.
- One has to wait long enough to allow the slower modes to saturate.
- One can distinguish between toroidal and slab ETG modes by comparing the fluctuations with the topography of $\omega_{*e}^T/\omega_{\kappa e}$ and Γ_0 .

Stellarator physics

Stellarator Physics Toroidal ETG at $a/R \ll 1$

- Application of toroidal ETG modes to low aspect ratio devices such as stellarators.
- Recall that toroidal ETG modes in tokamak pedestal required $R/L_{T_e} \gg 1$. In stellarator, we can make R/L_{Te} large by having R relatively large because $a/R \ll 1$, even if $a/L_{Te} \sim 1$:

$$\frac{\omega_{*e}^{T}}{\omega_{\kappa e}} \sim \frac{k_{y}}{k_{\perp}} \frac{R}{L_{Te}} \sim \frac{k_{y}}{k_{\perp}} \frac{a}{L_{Te}} \frac{1}{\epsilon} \sim 1,$$

and hence we find the toroidal ETG modes with $k_{\perp} \gg k_{\nu}$.

Linear simulations **Toroidal ETG modes in W7-X**

• How do we know these are toroidal ETG modes?

2) Mode location not magnetic field strength minima

5) Kinetic and adiabatic ions makes no difference (which it would for TEM).

Discussion

Discussion

- Steep temperature gradients cause ITG and ETG to span a wider range of perpendicular and parallel scales.
- slowest growing modes in box, which modify transport at long times.
- top/bottom.

• Makes nonlinear gyrokinetic simulations much more challenging than in the core.

• Nonlinear gyrokinetic simulations need to be run for sufficiently long to capture

• Pedestal toroidal ETG is not ballooning; tends to reside at poloidal cross section

Future Work

Some future research directions

- Investigate role of shaping in pedestal transport: Can we use different magnetic geometries to optimize turbulent transport in the pedestal? (from the perspective of magnetic drifts and FLR effects)
- Experimentally, search for fluctuation amplitudes at pedestal cross section top/ bottom.
- Scrape off layer / divertor physics: is non-ballooning pedestal turbulence problematic?
- How much do electromagnetic effects change the picture?

Backup slides

Nonlinear pedestal physics What's new? Why don't we see this turbulence in the core? CORE

• Core: favorable Γ_0 and $\omega_{*_e}\eta_e/\omega_{\kappa e}$ align. Pedestal: separated!

1.50 0.75 0.00 -0.75-1.50-2.25

Flux expansion and local magnetic shear mostly responsible for turbulent 'confinement'

The perpendicular wavenumber can be written as

$$|k_{\perp}|^{2} = k_{y}^{2} \left| g_{2} + 2\hat{\theta}_{0}g_{21} + \hat{\theta}_{0}^{2}g_{22} \right|,$$

eld line distance), $g_{21} = \nabla_{N}\alpha \cdot \nabla_{N}q$ (~local magnetic shear),

where $g_2 = |\nabla_N \alpha|^2$ (field line distance) $g_{22} = |\nabla_N q|^2$ (flux surface expansion).

• The local magnetic shear and flux surface expansion localize turbulence in the pedestal.

• Flux surface expansion and local magnetic shear responsible the shaping that keeps slab ETG turbulence at the outboard midplane.

Nonlinear pedestal physics Changing the $\tilde{\theta}$ location of slab and toroidal modes (pedestal-scaping)

- different locations?
- For example, what would the turbulence look like if we had the following geometry (circle plus betaprim)?

 $k_{y}\rho_{i} = 14.10$

• Using our understanding of the geometry, can we move toroidal and slab ETG modes to

Main idea explored in this talk Shaping significantly changes the character of toroidal ETG mode in pedestal

• Because we require

$$\frac{\omega_{*e}^{T}}{\omega_{\kappa e}} \sim \frac{k_{y}}{k_{\perp}} \frac{R}{L_{Te}} \sim \frac{1}{\hat{s}\theta} \frac{R}{L_{Te}} \sim 1,$$

the distance to the mode R can significantly change the toroidal ETG physics, especially the critical gradient (more on this later).

• Consider a **positive triangularity** surface being deformed to a **negative triangularity** surface at tight aspect ratio (see figure). This changes *R* significantly!

Effect of shaping on *R* Shaping parameters that change *R*:

Critical gradients How to stabilize toroidal ETG modes in the pedestal?

• For instability, we require $C < \frac{\omega_{*e}^{T}}{\omega_{\kappa e}} < D$, where C and D are real numbers.

• Using $k_{\perp} \simeq k_y \hat{s} \theta$, we find $\frac{\omega_{*e}^T}{\omega_{\kappa e}} \sim \frac{k_y}{k_{\perp}} \frac{R}{L_{Te}} \sim$

 $\frac{1}{D} \frac{R}{L_{T_o}} \frac{1}{\hat{s}} \lesssim \theta$

Thus, the critical gradient is given by

 $L_{Te,crit}$

 \mathcal{A}

$$\frac{1}{\hat{s}\theta} \frac{R}{L_{Te}}$$
 and so for instability,

$$\theta \lesssim \theta_{\max} \equiv \frac{1}{C} \frac{R}{L_{Te}} \frac{1}{\hat{s}}$$
 (1).

• There might not be values of θ in an equilibrium that satisfy (1)! When this happens, the mode is stable, which is when $\theta_{\min} \simeq \theta_{\max}$, where θ_{\min} is given by the geometry.

$$= C\theta_{\min} \frac{a}{R} \hat{s}.$$

Critical gradients

• Can play with the scaling

to give scalings with triangularity, aspect ratio, tilt angle, etc. For example, with tilt angle, can write

 $R \simeq R_0 \pm \kappa a \sin \theta_k$

Effect of tilt angle.

Critical gradients

• After algebra, find

$$\frac{a}{L_{Te}, \operatorname{crit}} \sim C\hat{s}\theta_{\min}\left(\frac{R_0}{a} \pm \kappa \sin\theta_{\kappa}\right)^{-1}$$

Effect of tilt angle.

Effect of shaping on L_B : triangularity

$$R \simeq R_0 - a\delta \simeq a\left(\frac{1}{\epsilon} - \delta\right)$$

$$\frac{\omega_{*e}^{T}}{\omega_{\kappa e}} \sim \frac{1}{\hat{s}\theta} \frac{R}{L_{Te}}$$

Why top/bottom of flux surface? **Answer: local flux expansion**

• Perpendicular wavenumber can be written as

$$E_y^2 ||\nabla y|^2 + \theta_0 \nabla x \cdot \nabla y + \theta_0^2 |\nabla x|^2 |.$$

- The quantity $\nabla x \cdot \nabla y$ is roughly the local magnetic shear and $|\nabla x|^2$ is the **local flux expansion**.
- When $|k_1 \rho_s|$ is smaller, **finite Larmor radius** (FLR) effects are weaker, and so the growth rate is typically higher for $|k_{\perp}\rho_s|$ smaller.

Flux expansion cartoon Consider flux surfaces for two different shapes

Circular

Elongated

Flux expansion cartoon Consider flux surfaces for two different shapes

Circular

constant

Elongated

Flux expansion cartoon Consider flux surfaces for two different shapes

constant

Flux expansion cartoon How flux expansion affects the radial wavenumber

(neglecting magnetic shear)

reasing $|k_r|$ decreasing

Flux expansion cartoon How flux expansion affects the radial wavenumber

Flux expansion cartoon How flux expansion affects the radial wavenumber

Flux expansion cartoon Consider a mode on circular and elongated surface

 $k_{\perp}^{2} = k_{y}^{2} ||\nabla y|^{2} + \theta_{0} \nabla x \cdot \nabla y + \theta_{0}^{2} |\nabla x|^{2}|$

Mode starts at outboard midplane

Flux expansion cartoon Consider a mode on circular and elongated surface

 $k_{\perp}^{2} = k_{y}^{2} ||\nabla y|^{2} + \theta_{0} \nabla x \cdot \nabla y + \theta_{0}^{2} |\nabla x|^{2}|$

Mode moves to outboard midplane as flux expands

Mode starts at outboard midplane

Evidence for this!

- Recall that $k_{\perp}^2 = k_y^2 ||\nabla y|^2 + \theta_0 \nabla x \cdot \nabla y + \theta_0^2 |\nabla x|^2 |$. By removing $|\nabla x|^2$ (flux expansion), we see can how much k_{\perp}^2 changes.
- Plotting $k_{\perp}^2(\theta, \theta_0)$ for JET pedestal with and without $|\nabla x|^2$:

Evidence for this!

• Recall that $k_{\perp}^2 = k_y^2 ||\nabla y|^2 + \theta_0 \nabla x \cdot \nabla y + \theta_0^2 |\nabla x|^2 |$. By removing $|\nabla x|^2$ (flux expansion), we see can how much k_{\perp}^2 changes.

Generalized principles Turbulence typically at location where flux expansion is high

