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Plasma-material interactions (PMI) impact the 
performance of both material and plasma
• PMI compromise both material and 

plasma performance

- Mutually degrade

- Erosion, fuel trapping, morphology 
changes, etc.

• Critical for future fusion reactors, their 
wall design and material choice
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Plasma-material interactions (PMI) are multi-
physics and multi-scale in nature
• PMI compromise both material and 

plasma performance
- Mutually degrade
- Erosion, fuel trapping, morphology 

changes, etc.
• Critical for future fusion reactors, their 

wall design and material choice
• It’s a multi-scale physics problem
- We address it by integrating multiple, 

high-fidelity models
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The resulting integrated model is applied to 
simulate PISCES and ITER plasma exposures

• The model was benchmarked against PISCES experiments
• We applied it to predict the evolution of the ITER divertor under He operation 

and burning D-T plasmas 
• We use these tools to further examine the effect of He on hydrogenic retention
• We’ve applied the model to WEST experiments with He plasma
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Integrated modeling 
workflow
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Benchmarked against PISCES experiments 

Model validation



The integrated model was benchmarked against 
PISCES experiments
• Extensive comparison of impurity transport (GITR + F-TRIDYN) and sub-surface 

evolution (F-TRIDYN + Xolotl) predictions to experiments, across a range in

- Flux: 0.5-5.4·1022 /m2s

- Biasing voltage: 75V, 250V

- Plasma composition: 100% He,10%He-90%D

W target

W redep. 

tower

Vbias

impurity transport experiment
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• Langmuir probe measurements provided the 

background plasma ne, Te

• Two sets of experiments

- W I spectroscopy, target mass loss, tower mass gain 

for to measure W erosion and transport 

- Removable W targets to analyze with LIBS and LAMS



Xolotl and GITR show good agreement with 
experimental measurements
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Exp analysis
Xolotl

predictions

• GITR reproduces experimentally 
measured mass loss, W I lines and Ti
bead mass gains

• The experimentally measured He & D 
concentrations are fairly reproduced 
by Xolotl

ɸ Exp measurement
– GITR prediction

GITR sensitivity



Predicting the evolution of the ITER divertor under He plasma and 
burning plasma operations

Model application



SOLPS predicts a partially detached divertor during 
He and burning plasma operations
• Standard strongly radiating, partially-detached scenario
- Very low temperature (~1 eV), high flux near separatrix strike point
- Higher temperature, lower density and flux away from strike point
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plasma parameters during He ops• During BPO, nearly 
75% of power is 
radiated, 
- mainly by Ne in 

the divertor; peak 
heat flux of ~7 
MW/m2



The high-energy tail of light species’ IEADs extends 
beyond the threshold for W sputtering
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• hPIC shows that while much of the impact energy-angle distribution (IEAD) for light 
ions is below energy threshold for W sputtering, 

• the high-energy tail extends well above sputtering threshold

IEADs for T+, BPOIEADs for He+, He ops



Heavy impurities dominate sputtering when present, with 
contributions from the high-energy tail of light species
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Accounting for sputtering and reflection rates provided by F-TRIDYN, integrated impurity 

transport calculations predict

• He
2+ 

is the main impurity source during He plasma operations (W in near the strike point)

• heavy impurities (Ne) dominate sputtering during BPO (W in the private flux region)

Sputtering rate 
during He ops

W erosion contributions 
during He ops

W erosion contributions 
during BPO



GITR predicts strong local re-deposition, with net 
deposition around the strike point
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Impurity transport calculations of GITR predict 
• strong (>95%) prompt or local re-deposition of the eroded W 

- strong drag forces that push impurities back to the surface 

• net deposition around the strike point
- transport by local E fields  
- higher deposition rate at lower Ti

• net erosion further along the target



Surface height in Xolotl is similar to GITR, with 
enhanced, He-induced surface growth
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• The same surface height pattern is predicted by GITR and Xolotl
• Differences arise around the strike point (Ti~eV) from shallow gas implantation, He-

induced trap mutation and surface growth
• These processes affect less the locations with high impact energies (Ti~40eV, further up 

the target)
GITR (He ops) Xolotl (He ops)



During He ops, He accumulation & retention are a 
balance between implantation rate & energy
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• He accumulation largely follows the flux profile, 

with larger retention where Ti is high, 

- even though flux & fluence are order(s) of magnitude 

less than at the peak

- Shallow implantation at low Ti leads to higher outgassing 

rates and more frequent, small bursts; thus lower He 

retention

- Deeper implantation at high Ti leads to less outgassing 

and larger, less frequent bursts; thus higher He retention 

• Consistent with results from PISCES
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flux

Peak 
temp

He accumulation

He retention



During BPO, heat fluxes increase the surface 
temperature by up to ~200K

• For Pin, SOL= 100 MW discharge, Tsurf increases up to ~200K 

- While this is no threat of melting or recrystallization (no transients included)

- It does affect gas dynamics

• The thermal coupling between locations is negligible

- We model multiple, independent 1D locations
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Surface temperature



Differences in Tsurf, and thus in gas diffusion 
correlated with the local heat flux

• Tritium diffuses faster with 
increasing surface 
temperature (Tsurf), mainly 
outgassing

• The peak in hydrogen 
concentration takes the 
value expected for 
Tsurf=Tsurf(t)
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R-Rsep=0.19m: q~1MW/m2R-Rsep=0.025m: q~5MW/m2



How pre-existing damage drives the depth-integrated T content, as 
well as its depth-distribution

Gaining insight into the effect of He on 
hydrogenic retention



We now evaluate sequential exposure to He 
plasmas and ITER Burning Plasma Operations
• For each of the 3 substrate compositions (in He-V clusters), resulting from 

exposure to:
- 100s of He plasma in PISCES, at Vbias ~ 75 V
- 100s of He plasma in PISCES, at Vbias ~250 V
- 10s of early ITER He ops

• We model the subsequent exposure to 100s of full power BPO in 5 locations:
- Peak in particle flux (R-Rsep~0.025m)
- Peak in heat flux (R-Rsep~ 0.05m)
- Peak in plasma temperature (R-Rsep~ 0.1m)
- 2nd peak in He flux (R-Rsep~0.2m)
- Further upstream (R-Rsep~ 1m)
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Higher He fluence

Realistic He spectrum



Gas content saturation depends on both the 
vacancy content and their depth distribution
• In substrates pre-exposed in PISCES, T content stabilizes within O(1022 ion/m2) 
- quick increase in D-T content due to initial near surface V content

• continues to grow for initially pristine substrates & pre-exposures to ITER He ops
- ITER He+BPO: larger increase in H on the long scale because of higher V concentration between 100 

and 1000 nm
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a) b) c)PISCES, 75 V ITER He BPO only



Pre-existing damage greatly determines the 
saturation level of hydrogenic retention 
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• The amount of T contained in the PISCES pre-exposed material stabilizes at a 
fixed value for each Vbias

- 1020 atoms/m2 (75 V) and 1.4⋅1020 atoms/m2 (250 V) 

• These values are maintained over a wide range of other parameters, although 
can be altered e.g., by a large presence of bursting

a) b)Peak in particle flux Peak in temp.
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He implantation in pre-existing vacancies leads to 
bursting

A. Lasa (she/her)   |   Multi-scale Modeling of Divertor Evolution   |   NSTX-U Seminar 6.7.202122

Implantation profile Initial V size-depth distribution Evolution of gas content

peak 
in 

temp

peak 
in heat 

flux



Substrates with pre-existing damage show a 
reduced temperature sensitivity
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• Heat-flux induced temperature variations (~200K) are insufficient to de-trap T 
from He-V clusters (present in all pre-damaged substrates)

T concentration, peak heat flux, PISCES 250 V



T remains closer to the surface in pre-damage cases, 
while bulk content is higher for initially pristine ones
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• Over all, we observe 3 depth-ranges for gas accumulation:
a) near-surface (10-100nm), present in all pre-exposed substrates & driven by He damage
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T concentration, peak heat flux, PISCES 250 V(a)



T remains closer to the surface in pre-damage cases, 
while bulk content is higher for initially pristine ones
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• Over all, we observe 3 depth-ranges for gas accumulation:
a) near-surface (10-100nm), present in all pre-exposed substrates & driven by He damage
b) mid-range (100nm-10um), where the deepest post-PISCES exposure vacancies existed
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T concentration, peak heat flux, PISCES 250 V V concentration, peak heat flux, PISCES 250 V(a) (b)



T remains closer to the surface in pre-damage cases, 
while bulk content is higher for initially pristine ones
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• Over all, we observe 3 depth-ranges for gas accumulation:

a) near-surface (10-100nm), present in all pre-exposed substrates & driven by He damage

b) mid-range (100nm-10um), where the deepest post-PISCES exposure vacancies existed 

c) deeper in bulk (>10um), consistently higher in initially pristine substrates

T concentration, peak heat flux, PISCES 250 V T concentration, peak heat flux, pristine W(a), (b) (c)



Even small concentrations of He can induce near-
surface T trapping in the long term
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• after bursting, the He outgasses and V’s remain; the cavity is refilled with D-T, the main 
plasma species, which saturate the bubble

• Similar effects have been observed experimentally

• the surface grows because of net W re-deposition 

• modified trap mutation (TM) creates He-V clusters 
near the surface, which move as the surface grows 

• when the surface moves up, the He gets implanted 
where the HeV had been created (implantation at 
1-5 nm), trapping directly with the HeV clusters and 
generating bubbles large enough to burst

BPO only

V.K. Alimov et al., JNM 399 (2010) 
K. Kayatama et al., FST, 54:2 (2008) 
M.J. Baldwin et al, NME 23 (2020)



Application of our model to simulating WEST 
experiments



We’ve applied similar workflows as for ITER simulations 
to interpreting WEST He plasma experiments
This was a great opportunity to benchmark our codes 
against existing, all metal tokamak experiments
• Unfortunately we’ve faced the reality of working with tokamaks 

(high O concentrations)
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We’ve applied similar workflows as for ITER simulations 
to interpreting WEST He plasma exp’s
This was a great opportunity to benchmark our codes 
against existing, all metal tokamak experiments
• Unfortunately we’ve faced the reality of working with tokamaks 

(high O concentrations)

We’ve followed two different workflows:
• ITER-like flow to study erosion-transport of W off the divertor
• A simplified sequence to study the evolution of samples in the 

collector probe

SOLPS
(n, T, …)

hPIC
(IEADs)

RustBCA
(spY, implantation)

Xolotl
(matl. evolution)
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The plasma and sheath near the probe are characterized 
by SOLPS & hPIC simulations
For a background plasma characterized by SOLPS, we’ve calculated the IEADs at 
the different locations of the probe

He+ He++ F-TRIDYN / 
rustBCA
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We model the substrate evolution using Xolotl
With these IEADs, we’ve modeled the evolution of the collector probe samples in 
Xolotl, exploring different assumptions for heat fluxes and surface temperatures 

• Particle flux ~ 7.8·1022 He/m2

• Heat flux ~ 1MW/m2

• Bulk boundary condition: fixed temp (343K) or reflective

• Depth ~ 4mm 

• Simulated time = 1s

• Sp Yield=4.4·10-3

He+ and He++ implanted as a single flux
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The temperature evolution changes with the boundary 
conditions in the bulk

Bulk flux 0Bulk temp at t=343K

Clearly different temperature profiles, 
• especially in shape (slope vs flat)
• 80-110K difference in temperature range as well (surface & bulk, respectively)
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However, that doesn’t seem to significantly affect He 
retention, surface growth, depth profiles
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Lack of temperature effect in this range due to…
No effect in He retention

• Because content is driven by trapping in V’s (created by TM) à He-V binding stronger than this 

80K difference 

No effect on surface growth because: 

• after the initial phase, dominated by sputtering

• the change in temperature (smallest in the near-surface) isn’t sufficient to affect the TM 

• transition in TM models of Xolotl is outside this range

And so, depth profiles neither change with the bulk boundary condition

Note: All these conclusions are based on simulations of up to 1s (experimental range) 
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Summary
• We’ve integrated and successfully validated multiple high-fidelity codes to model PMI
• Our predictions of ITER simulations reveal:
- The edge plasmas are representative of partially detached divertors
- Heavy impurities dominate erosion when present, with contributions from light ions due to the 

high-energy tail of IEADs
- >95% of eroded W is locally or promptly re-deposited 
- sub-surface gas dynamics leads to additional surface growth in areas of low Ti

- High heat flux decreases near surface T concentration
• Subsequent He - BPO exposures show that hydrogenic species interact (& bind) with He - V 

clusters, which will modify the tritium retention/permeation behavior
- Gas content stabilizes in substrates pre-exposed in PISCES, at levels set by pre-existing V’s, 

while continues to grow in substrates initially pristine or pre-exposed ITER He plasmas
- Bursting occurs when gases implanted in pre-existing vacancies
- T remains closer to the surface in pre-damage substrates, while the bulk content is higher for 

initially pristine cases
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Outlook
• Experimentally verify hydrogenic retention in growing W layers 
• Evaluate the impact of pre-damage beyond plasma ops, e.g. in maintenance phases 

(baking temperature and duration)
- Need for further parametrization of the H-He-V system for mainly hydrogenic, non-over-pressurized bubbles

• Continue experimentally validating our PMI model in all-metal devices (WEST), and 
extend usage of our models to interpret /predict erosion-redeposition and H-trapping/W 
sub-surface evolution experiments (DIII-D)

• Extend the models to self-consistently treat seeded impurities (e.g., neon), the effects of 
mixed materials (W-Be) and evolving thermo-mechanical properties 

• Transition into dynamic simulations; e.g., to model ELMs
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Thank you for your 
time and attention!
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