NBI fast-ions in the RFP and LTX- β

Studies on well-developed to developing EP populations

1

- Critical fast-ion pressure measured on Madison Symmetric Torus
 - Natural fast-ions in RFP
 - Fast-ion dynamics in RFP
 - Large NBI ion population drives Alfvén continuum mode (bursting mode)
 - Collimated D-D neutron flux diagnostic developed to measure fast-ion profile
- \bullet Start of fast-ion studies in LTX- β
 - Initial NBI operation- no coupling to plasma
 - Extensive modeling to optimize coupling
 - New higher current equilibria
 - Upcoming work
 - Characterization of beam: NPA, IR thermography, spectroscopy
 - 3d equilibria- large toroidal asymmetry due to shells could drive significant loss
 - Mode activity (?)

Good EP population to study in RFP

1.0

T (keV)

- Madison Symmetric Torus- good testbed for interesting EP physics
 - Low magnetic field \rightarrow higher fast-ion beta (stronger drive)
 - High shear \rightarrow Increased stability against continuum modes (EPMs) •
- Dynamics influenced by tearing instability
 - Largely impacts evolution of equilibrium, heat/particle transport
 - Ion heating- natural fast ion population
 - Perpendicular heating at sawtooth
 - Runaway ion tail develops during relaxation
 - Large anisotropy in confinement phase space

 B_T Reversed

EP motion decoupled from local b_r

• Fast-ion drift velocity stays on flux surface

$$v_{GC} = v_{\parallel} \boldsymbol{b} + \frac{v_{\perp}^2}{2\omega_c} \frac{\boldsymbol{B} \times \boldsymbol{\nabla} \boldsymbol{B}}{|\boldsymbol{B}|^2} + \frac{v_{\parallel}^2}{\omega_c} \frac{\boldsymbol{B} \times \boldsymbol{\kappa}}{|\boldsymbol{B}|}$$

- Rational surfaces shifted from locations of tearing mode activity
 - Near classical confinement of co-injected EP (~10ms)
 - (Counter-Ip: ~1ms, perpendicular injection ~4-5ms)

		∇B	К			
	Tokamak	Ŕ	Ŕ			
	RFP	ŕ	ŕ			
	(.), (29),					
q_f =	$=\frac{\omega_{\phi}}{\omega_{\theta}}=\frac{7v_{\phi}}{Rv_{\theta}}$					
q_f 2	$q_f \approx q_{mag} + \frac{s_{\parallel}}{b_{\theta}^2} r_L \frac{2(1-\mu\Omega)b_{\theta}^2 - r}{2R\sqrt{1-\mu\Omega}}$					
[Hudson 2006]						

Good EP population to study in RFP

- Wanted to investigate what limits fast-ion content in RFP
- NBI provides well-confined super-Alfvénic population to study
 - Mode activity is species dependent- ran D-beam into D-plasma
 - Discharge style chosen to isolate single mode activity
 - Removal of m=0 surface eliminates most sawteeth
 - Mode activity observed during NBI then corresponds to an "unavoidable" limit in these discharges

	*			
	r Reversed $^{\perp}$			
NBI Parameter	Specification			
Beam energy	25 keV			
Beam power	1 MW			
Pulse length	20 ms			
Composition	100% D			
Madison Symmetric Torus				
R=1.5 m; a=0.52 m				
l _p ~ 200 – 500 kA				
B ~ 0.2 – 0.5 T				
T _e (0) ~ 200 – 2000 eV				
n _e ~ n _D ~ 10 ¹³ cm ⁻³				
Pulse length ~ 60-100 ms				

EPM resonant with NBI population

- Periodic "bursting" mode observed during NBI, concurrent with saturation of neutron signal
- Mode indicative of destabilization of Alfvén continuum mode via strong particle drive
 - Alfvén eigenmodes cause resonant transport and were avoided
 - Without AE activity EP population grows until EPM destabilized
 - Isolated mode: only (1,5) activity (prior MST work on n=4 IAE)

EPM resonant with NBI population

- Full orbit code (POET) developed to probe modeparticle resonance
- Energy transfer to mode:
 - From spatial gradient in fast-ion distribution (NPA shows E constant with r)
 - Transfer via resonant fast-ions
- Resonance observed with mode
 - Power transferred observed using simple (1,5) mode structure
 - Multiple full orbits representative of NBI born ions modeled that showed positive power transfer
 - Consistent with radial location and frequency of observed bursting mode

EP profile measured via D-D neutron flux

- Full D beam, almost all fusion from beam-plasma interactions $\Gamma_{MST} \cong \Gamma_{bt} = \iint f_f n_i \sigma v_f dV dE$
- Neutron detectors calibrated via multiple methods, good linearity over MST flux range
- Novel collimated neutron detector measured EP profile

- Code developed to validate collimator design
 - Model of background suppression of moderating material (validated with MCNP)
 - Optimization of scintillator to increase sensitivity to direct capture neutrons
- Large background persisted
 - Scintillator-PMT type detector sensitive to fast neutrons, but also high energy photons
 - Pulse shape discrimination possible
 - Differencing technique on large datasets

- EP beta profile inverted onto 2-parameter model
 - Good agreement between experimental/modeled flux
 - "early" and "late" time windows were analyzed to provide information on profile development while maintaining good statistics

- EP beta profile inverted onto 2-parameter model
 - Good agreement between experimental/modeled flux
 - "early" and "late" time windows were analyzed to provide information on profile development while maintaining good statistics
- Burst ensemble showed no drop in neutron rate
 - Prior work with H-NBI saw drop in NPA signal
 - Triplet mode activity- mode coupling enhanced losses
 - Suggests transport but not loss- local flattening

- EP beta profile inverted onto 2-parameter model
 - Good agreement between experimental/modeled flux
 - "early" and "late" time windows were analyzed to provide information on profile development while maintaining good statistics
- Burst ensemble showed no drop in neutron rate
 - Prior work with H-NBI saw drop in NPA signal
 - Triplet mode activity- mode coupling enhanced losses
 - Suggests transport but not loss- local flattening
- Reconstructed profiles show ~2.5% reduction in core-beta due to EPM activity
 - $\langle \beta_f \rangle = 2.2 \pm 0.3\%$
 - $\nabla \beta_f = 0.52 \pm 0.02\%/cm$

Fast-ion studies in LTX-β

- Flat Te achieved with Li walls
- NBI installed 2019 to further low-recycling boundary studies
 - Core fueling to sustain plasma
 - Heating for study of energy scaling
 - Possible stabilization against density gradient modes

	NBI Parameter	Specification			
	Beam energy	20 keV			
	Beam power	700 kW			
	Pulse length	5-7 ms			
	Composition	100% H			
Lithium Tokamak Experiment Beta					
R=0.4 m; a=0.25 m					

l _p ~ 100 – 150(?) kA	
B ~ 0.3 T	
T _e (0) ~ 200 eV	
n _e ~ 10 ¹³ cm ⁻³	

Pulse length ~ 50 ms

- Flat Te achieved with Li walls
- NBI installed 2019 to further low-recycling boundary studies
 - Core fueling to sustain plasma
 - Heating for study of energy scaling
 - Possible stabilization against density gradient modes
- Initial operation (Ip<100kA) total loss of EPs

Optimizing NBI coupling

Optimizing NBI coupling

- Preference for HFS/LFS coupling
 - Reversed-current operation for HFS coupling
 - Tangency scan optimum at 35cm
- Large (but very localized) heat flux to walls
- Results very sensitive to equilibrium geometry, data gathering ongoing

Optimizing NBI coupling

- Preference for HFS/LFS coupling
 - Reversed-current operation for HFS coupling
 - Tangency scan optimum at 35cm -
- Large (but very localized) heat flux to walls
- Results very sensitive to equilibrium geometry, data gathering ongoing

Recent upgrades enable EP population

- Recent shot development Ip~130kA
- Mechanical upgrades
- TRANSP/NUBEAM shows growth of population mid-outboard region
 - Appreciable shine-through, orbit, and cx loss
 - But measurable beam heating (ohmic ~200kW)
 - Just sub-Alfvénic, could see modes in future

Post-discharge tools for NBI coupling data

- Equilibrium reconstruction is (semi) automatic
- Equilibrium is dynamic
 - Amassing data on coupling as mag axis shifts
 - CONBEAM set up to analyze equilibria (no TS data)

Fast-ion studies in LTX- β

- Upcoming: IR thermography, spectroscopy
- NPA: diagnose EP pitch/energy distribution
 - Degas2 modeling underway
- Inter-shot beam analysis (no real-time plasma control)
 - "tangency" scan data
 - Assess impact of reversed-current ops
- Fast-ion transport in 3D fields

Thank you!

Extras

• EPs stabilizing effect on core tearing mode, suppress transition to QSH

Extras

- Explanation of differing neutron flux saturation
 - Diffusive boundary at mid-radius set by fast-ion island overlap
 - Lower Ip reduces particle flux, slowing lowers average energy
 - This reduces qfi moving diffusive boundary inward

- Beta->pressure->density
- E spatially constant, B fields well known

Fig. 5.13: TRANSP average fast-ion energy vs time at four radii from r = 0.02 m shows near constancy with radius.

Fig. 5.14: ANPA spectrogram for 300 and 500 kA datasets. Injection near 25 keV connects through a broad profile to the lower energy channels.

[Capecchi thesis, TRANSP, Liu, Anderson et al]

Extras

• Very small EP population sensitive to chances in magnetic moment

Extras

- TRANSP scan shows good beam heating at higher Eb despite increases to orbit loss/shine-through
- Assumes identical beam optics

