



#### Energetic Particle Transport/Confinement Studies Due to Low Frequency MHD Activity in JET and the Nonaxisymmetric RFP

#### P. J. Bonofiglo

Princeton Plasma Physics Laboratory, Princeton, NJ 08540 USA

NSTX-U/Magnetic Fusion Science Seminar

September 20, 2021

**PPPL** - Remote

### Outline

- Fast Ion Transport in the Non-axisymmetric RFP
  - Energetic Particle Instabilities
  - Neoclassical Enhancement
  - Tearing Mode Effects
- Integrated Modeling on JET
  - JET's Fast Ion Loss Detector
  - Synthetic Loss Model
  - Experimental Validation
- Future Work



# The RFP is Dominated by a Large Tearing Mode Spectrum

• Comparable poloidal and toroidal fields

9/20/21

- RFP q-profile < 1 and monotonically decreases towards edge
- Many m=1 rational surfaces result in overlapping tearing mode islands





 $\begin{array}{l} \underline{\mbox{Madison Symmetric Torus}} \\ R_0 = 1.5 \mbox{ m; } a = 0.52 \mbox{ m} \\ I_p \sim 200 - 600 \mbox{ kA; } |B| \sim 0.2 - 0.5 \mbox{ T} \\ T_e(0) \sim 200 - 1000 \mbox{ eV; } n_e \sim n_i \sim 10^{13} \mbox{ cm}^{-3} \\ 25 \mbox{ keV tangential H- or D-NBI} \\ 1 \mbox{ MW heating; super-alfvenic; } \beta_{fi} \sim 5 - 8\% \end{array}$ 

### Fast lons are Well Confined in the Standard RFP



 Grad-B and curvature drifts are <u>along</u> flux surfaces in the RFP:

$$\vec{v}_{\nabla B} = \frac{w_{\perp}}{qB} \left[ \frac{\hat{B} \times \vec{\nabla}B}{B} \right] \qquad q_{\text{mag}} = \frac{rB_{\phi}}{RB_{\theta}}$$

$$\vec{v}_{R_c} = \frac{2w_{\parallel}}{qB} \left[ \frac{\hat{B} \times \hat{R}_c}{R_c} \right] q_{\text{fi}} = \frac{rv_{\phi}}{Rv_{\theta}} \approx q_{\text{mag}} + \text{Drift Terms}$$

- Fast ions ignore stochasticity due to GC-drifts
  - Well measured and modeled<sup>a</sup>
  - Minimal fast ion losses<sup>b</sup>
- Electrons follow field lines = poor thermal confinement

<sup>a</sup>Fiksel (PRL 2005) <sup>b</sup>Bonofiglo (RSI 2016)

#### Helical RFP is Defined by a Collapse of the Tearing Mode Spectrum

• MST plasmas self-organize into a 3D-helical equilibrium at high Lundquist number



9/20/21



MH = Multiple Helicity = Standard RFP
QSH = Quasi-Single Helicity = Helical RFP
m=1,n=5 core-resonant tearing mode
Phase controlled with RMPs

$$\frac{\tilde{b}_5}{|B|} \sim 5 - 8\% \quad \frac{\tilde{b}_{6-16}}{|B|} \sim 0.5 - 2\%$$

### 3D-RFP Possesses a Helical Core Surrounded by Typical RFP Stochasticity

- The core-most resonant tearing mode grows and envelops the magnetic axis forming a well-ordered helical core
- Helical RFP exhibits good thermal confinement





# Problem: Fast Ion Confinement Worsens in the Helical State – Why?

• Fast ion confinement time measured from decaying neutron rate with beam-blip technique



9/20/21

# **Energetic Particle Bursts React Strongly to the Changing Equilibrium**

• Bursts up-shift in frequency with growth in the n=5 perturbation and then disappear

![](_page_7_Figure_2.jpeg)

9/20/21

![](_page_7_Figure_3.jpeg)

- Global neutron flux is nearly constant throughout burst
- Overall volume integration of the particle content is conserved
- Well observed in the standard RFP and shown to cause local redistribution of fast ions but not global losses

Lin (PoP 2013,2014); Koliner (PRL 2012); Cook (PoP 2015); Capecchi (NuclFus 2019)

## **Helical RFP Promotes the Possibility for Toroidally Trapped Ions**

- Standard RFP: Fast ions possess  $\rho_L > w_B \rightarrow$  larger diffusive step size (right)
- Toroidal variations in the magnetic field allow for superbanana orbits (bottom left)  $\rightarrow$  Notable in stellarators<sup>a</sup>
- Superbanana orbits can lead to enhanced transport (bottom right)

![](_page_8_Figure_4.jpeg)

![](_page_8_Figure_5.jpeg)

<sup>a</sup>Mynick (PoP 2006)

9/20/21

### Toroidal Symmetry Breaking Leads to Helical Magnetic Wells

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_2.jpeg)

- Fast ion GC's observe different magnetic topology due to drifts

- (a.) QSH magnetic contours with field line trace (white lines)
- (b.) Magnetic field strength per toroidal transits

- Toroidal wells exist for helical trapping of low-pitch fast ions and the presence of superbanana orbits

9/20/21

## Helical RFP Lacks Strong Neoclassical Behavior

$$\Gamma = D\nabla n \longrightarrow D = \frac{\Gamma}{dn/dr}$$

- ORBIT: only (1,5) mode active; no slowing
- No 1/v or superbanana observed
- Consistent with prior work on thermals<sup>a</sup>
- Confirmed with full orbit code where toroidally trapped fast ions are confined
- Helical RFP like omnigenous stellarator<sup>b</sup>:

$$< \vec{v}_d \cdot \vec{\nabla} \psi > \sim 0$$

<sup>a</sup>Gobbin and Spizzo (PRL 2010) <sup>b</sup>Cary and Shasharina (PRL 1997, PoP 1997) <sup>c</sup>Eigenfunctions: Zanca and Terranova (PPCF 2004)

9/20/21

![](_page_10_Figure_9.jpeg)

### Fast Ion Confinement Reduces with Growing Helical Perturbation Strength

![](_page_11_Figure_1.jpeg)

1. Experimental measurements

![](_page_11_Picture_3.jpeg)

![](_page_11_Picture_4.jpeg)

## **ORBIT Simulations Replicate Experimental Loss Times**

![](_page_12_Picture_1.jpeg)

- 1. Experimental measurements
- 2. ORBIT simulations mimicking experiment

![](_page_12_Picture_4.jpeg)

![](_page_12_Picture_5.jpeg)

# Fast Ion Loss Times Show Strong Dependence with Subdominant Tearing Modes

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

- 1. Experimental measurements
- 2. ORBIT simulations mimicking experiment
- 3. ORBIT simulations (1,5) only

![](_page_13_Figure_6.jpeg)

## Subdominant Modes in Helical State Cause Drastic Reduction in Confinement

![](_page_14_Figure_1.jpeg)

- 1. Experimental measurements
- 2. ORBIT simulations mimicking experiment
- 3. ORBIT simulations (1,5) only
- 4. ORBIT QSH simulations scaling secondary modes
  - = Increasing helical perturbation

= Increasing subdominant amps

## Fast Ion Phase-Space Shows Increased Stochasticity in Transition to 3D-RFP

- Poincaré plots from ORBIT
- FAST ION PHASE-SPACE

![](_page_15_Figure_3.jpeg)

![](_page_15_Picture_4.jpeg)

## Fast Ion Phase-Space Stochasticity is Dependent on Subdominant Modes

- Poincaré plots from ORBIT: all plots have core-resonant strength of 7.5%
- FAST ION PHASE-SPACE

![](_page_16_Figure_3.jpeg)

Increasing subdominant amplitudes

![](_page_16_Picture_5.jpeg)

## **Fast Ion Transport Scales with Rechester-Rosenbluth like Diffusion**

![](_page_17_Figure_1.jpeg)

$$D_{\rm RR} = \pi R v_{fi} \sum_{m,n} \frac{\tilde{b}_r^2}{B_\phi^2} \delta(m - nq)$$
$$D_{\rm ORBIT} = v_{fi} \frac{\langle \Delta r^2 \rangle}{2L}$$

- Fast ion phase-space stochasticity approaches magnetic stochasticity
- RR transport is a function of the subdominant mode amplitudes
- Observed transport is consistent based on large n=5 island coupled with overlapping subdominant resonances

0.6

0.8

1.0

#### **Conclusions/Future Work**

- Fast ion transport in the helical RFP is dominated by tearing mode induced fast ion phase-space stochasticity with negligible neoclassical and wave-particle instability effects (*Bonofiglo 2019 PoP & 2020 PRL*)
- Scaling relations between MST and RFX-Mod show that subdominant tearing modes reduce further in amplitude with increase in Lundquist number:
  - Go bigger...
  - Further computational modeling seems most reasonable path forward

![](_page_18_Picture_5.jpeg)

### Outline

- Fast Ion Transport in the Non-axisymmetric RFP
  - Energetic Particle Instabilities
  - Neoclassical Enhancement
  - Tearing Mode Effects
- Integrated Modeling on JET
  - JET's Fast Ion Loss Detector
  - Synthetic Loss Model
  - Experimental Validation
- Future Work

![](_page_19_Picture_10.jpeg)

### Motivation

- Discrepancies between EP modeling and experiment still exist -> Still much to learn!
- Wish to better quantify effects of EP transport on local EP quantities of interest (ideally those that are measurable)
- Increasing complexity with multi-ion species plasmas, 3D-fields, heating scenarios, multimodal interactions, etc.
- JET DT-ops are now! ITER is approaching and fusion pilot plants are being designed

![](_page_20_Figure_5.jpeg)

Synthetic FILD Signal for ITER<sup>b</sup>

![](_page_20_Figure_7.jpeg)

<sup>a</sup>Kiptily (NuclFus 2018) <sup>b</sup>Garcia-Munoz (RSI 2016)

9/20/21

#### Direct Comparison & Interpretation between Experiment and Numerical Modeling is Strongly Desired

- Need to develop and validate integrated modeling/predictive tools to study transport phenomena
  - How do these phenomena impact EP confinement (i.e. losses)?
  - Can we replicate experimental measurements with a numerical model?
  - Can we synergistically combine experiment and model to garner more information/physics?
- Experimental measurements (neutons, FIDA, NPA, FILD) lack detail while modeling needs verification and validation

![](_page_21_Picture_6.jpeg)

## Synthetic FILD Signals can be Used to Validate/Constrain EP Transport Models

- Need to develop and validate integrated modeling/predictive tools to study transport phenomena
  - How do these phenomena impact EP confinement (i.e. losses)?
  - Can we replicate experimental measurements with a numerical model?
  - Can we synergistically combine experiment and model to garner more information/physics?
- Experimental measurements (neutons, FIDA, NPA, FILD) lack detail while modeling needs verification and validation
- JET's FILDs well suited for the problem at hand:

#### Synthetic Faraday Cup FILD:

9/20/21

- Signal is a result of direct capture of lost ions
- Measurements strongly correlate with loss mechanisms
- Numerical interpretation is "straightforward" by strictly tracking particle motion
- Poor statistics = many particles and long run time

#### JET Maintains an Array of 5 Faraday Cup Fast Ion Loss Detectors<sup>a</sup>

#### <u>General</u>

- Foil stacks are alternating layers of Ni and mica
- Ion energy determines deposition depth → Can't identify ion species
- Only way to differentiate ions is through modeling

![](_page_23_Figure_5.jpeg)

![](_page_23_Figure_6.jpeg)

Faraday Cup Assembly (Old 8-stack Design)

#### \_\_\_aDarrow (RSI 2004, 2006, 2010)

9/20/21

#### JET Maintains an Array of 5 Faraday Cup Fast Ion Loss Detectors<sup>a</sup>

#### <u>General</u>

- Foil stacks are alternating layers of Ni and mica
- Ion energy determines deposition depth → Can't identify ion species
- Only way to differentiate ions is through modeling

Energy Deposition Range per  $\operatorname{Foil}^{\mathsf{T}}$ 

| Depth ( $\mu$ m) | Proton<br>Energy<br>Range (Mev) | Deuteron<br>Energy<br>Range (Mev) | Triton<br>Energy<br>Range (Mev) | He3 Energy<br>Range (Mev) | Alpha Energy<br>Range (Mev) |
|------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------|-----------------------------|
| 0.0 – 2.5        | 0.0-0.49                        | 0.0-0.49                          | 0.0 - 0.50                      | 0.0 - 1.55                | 0.0 - 1.54                  |
| 5.0 - 7.5        | 0.68 – 0.96                     | 0.79 – 1.10                       | 0.84 - 1.20                     | 2.30 - 3.35               | 2.48 - 3.55                 |
| 10.0 - 12.5      | 1.10 - 1.32                     | 1.35 – 1.60                       | 1.48 - 1.76                     | 3.90 - 4.70               | 4.17 – 5.09                 |
| 15.0 – 17.5      | 1.45 – 1.65                     | 1.78 – 2.00                       | 2.00 – 2.25                     | 5.20 - 5.80               | 5.60 - 6.35                 |

#### Faraday Cup Assembly (Old 8-stack Design)

![](_page_24_Figure_8.jpeg)

#### <sup>†</sup>Found via SRIM code

9/20/21

#### <sup>a</sup>Darrow (RSI 2004, 2006, 2010)

#### Losses due to a Variety of MHD Activity have been Observed in JET Deuterium Plasmas<sup>a</sup>

![](_page_25_Figure_1.jpeg)

Fast Ion Transport and Confinement in JET and the 3D-RFP (Bonofiglo – NSTX-U 21)

9/20/21

### Reference Case: D-Plasma with D-NBI+ICRH Low Freq. MHD

- Heating: 25 MW NBI, 6 MW ICRH
- Fast ions: deuterons, DD-tritons, DD-protons, (minority fraction <1% and ignored)</li>
- Long-lived, low freq. modes observed in magnetics, scintillator probe, and Faraday cup

8/26/21

![](_page_26_Figure_4.jpeg)

Simulating Energetic Particle Losses in JET Plasmas (Bonofiglo - PPCF '21)

### ORBIT Code Handles Main Particle Pushing in the Numerical Model with "Kick" Features

- ORBIT<sup>a</sup>: Particle pushing code that calculates fast ion motion using Hamiltonian <u>guiding-center</u> mechanics
- "Kick"-model<sup>b</sup>: Calculates EP transport due to a supplied perturbation in the form of changes in the constants of motion<sup>c</sup> (energy E, canonical angular momentum  $P_{\phi}$ )

![](_page_27_Figure_3.jpeg)

<sup>a</sup>White (PhysFluids 1984) <sup>b</sup>Podesta (PPCF 2014) <sup>c</sup>Heidbrink (PoP 2008)

9/20/21

### Code Sets can be Combined to Form a Fully Integrated Model to Produce Synthetic Losses

- A classical/neoclassical transport model (TRANSP<sup>a</sup> EP dist.) is combined with resonant wave-particle interactions via the fast ions' constants of motion (ORBIT-kick<sup>b</sup>) which maps lost orbits to a synthetic detector
- TRANSP<sup>a</sup> provides a time-dependent simulation of the equilibrium and fast ion distribution within a large physics frame (evolving profiles, atomic physics, transport+heating, etc.)

![](_page_28_Figure_3.jpeg)

#### <sup>a</sup>doi:10.11578/dc.20180627.4 <sup>b</sup>Podesta (PPCF 2017)

9/20/21

### Stand-Alone NUBEAM Runs Add Statistics to the RF Tail at the Detector Resolveable Energies

![](_page_29_Figure_1.jpeg)

8/26/21

- Faraday cup FILD can measure up to 2 MeV deuterons  $\rightarrow$  far on the RF-tail
- Typical TRANSP run uses 3e4-2.5e5 NBI markers which cannot fully resolve the RF-heated tail up to the needed energies
- Use plasma state files from TRANSP run as input for the NUBEAM submodule only
- Ensemble the individual runs together to better fill in the fast ion distribution

Original deuteron distribution Ensembled deuteron distribution after 30 stand-alone NUBEAM runs

### Detector Measurements are Connected to the Model by Integrating Loss Orbits Backward<sup>a</sup>

![](_page_30_Figure_1.jpeg)

9/20/21

- Encompasses previous efforts on JET<sup>b-c</sup>
- Backwards integration performed with an ad-hoc full-orbit code without perturbation
- Initial conditions: equilibrium, Faraday cup apertures, energy, mass, charge, launch angle (pitch)
- Produce an exact loss distribution to compare/bias against the TRANSP computed distribution

a) 1.5 MeV deuteron orbit in 3D (blue);
limiters (black); FILD apertures (pink)
c) Poloidal projection of orbit

<sup>a</sup>Code courtesy of V. Goloborodko <sup>b</sup>Perez von Thun NuclFus 2011 <sup>c</sup>Fitzgerald NuclFus 2019

#### A Full Loss Distribution is Formed from Reverse Integrated Particles

![](_page_31_Figure_1.jpeg)

9/20/21

- Vary initial pitch and energy within the diagnostic's constraints and launch many particles of a given species to form an exact loss distribution
- Preferentially sensitive to particles near edge, low-pitch, and counterpassing
- Use this distribution to skew our initial particle sampling from the NUBEAM distribution → Only want to consider particles that are likely to be synthetically detected

- (a) Relative intensity of deuteron loss distribution orbit in (R,Z) with FILD apertures (pink)
- (b) Loss distribution in (energy, pitch)

### The TRANSP Fast Ion Dist. is Biased Against the Reverse Integrated Dist. to Give Marker Weights

- Why?  $\rightarrow$  To minimize wasted computational effort on particles that never reach the FILD
- Treat the reverse integrated dist. in a binary fashion (existence vs. nonexistence of a lost orbit)
- "Smear" the TRANSP dist. → connects physical EP density to loss dist. and breaks the GC vs. full orbit codes

![](_page_32_Figure_4.jpeg)

9/20/21

Magnitude of the smearing displacements are found from ORBIT "kicks<sup>"a:</sup> <u>Example ORBIT "kick"</u>

![](_page_32_Figure_6.jpeg)

<sup>a</sup>Podesta PPCF 2014 & 2017

### The TRANSP Fast Ion Dist. is Biased Against the Reverse Integrated Dist. to Give Marker Weights

- Take the TRANSP EP density as markers that can be translated to a particle flux on the detector
  - Translate TRANSP EP density  $[\#/cm^3/eV/d\omega/4\pi]$  to relative particle flux on detector [#]
- Biasing and smearing skews initial sampling toward detector (shown below)

![](_page_33_Figure_4.jpeg)

9/20/21

![](_page_33_Figure_5.jpeg)

- (a) Initial sampling of deuterons(black) overplotted on TRANSPDist.
- (b) Initial sampling in (energy, pitch)

#### Particles are Tracked to the FILD Geometry Using an Effective Full Orbit Position

![](_page_34_Figure_1.jpeg)

9/20/21

 $R_{FLR} = R_{GC} + \rho_L \cos(\phi_{gyro})$  $Z_{FLR} = Z_{GC} + \rho_L \sin(\phi_{gyro})$ 

- Observe diagnostic structure well
- Only red markers are counted

![](_page_34_Figure_5.jpeg)

### Final Synthetic Flux is Found by Tracking Particles in ORBIT to the FILD Aperture Geometry

- 1. Randomly sample from the TRANSP dist. & bias against the reverse loss dist.
- 2. Take the TRANSP fast ion density as a marker weight & track motion in ORBIT
- 3. Stop particles within a Larmor radius of the wall (may travel beyond LCFS) → track gyrophase to establish an effective "full orbit" position
- 4. Check if the particles reach the detector apertures and discriminate on accepted pitch
- 5. Sum over particles within foil energies for every ion species of interest

9/20/21

$$\Gamma_{ORB} = \sum_{i} \int w_{i}(R, Z, \Lambda, E) \Gamma_{NUB,i} dR dZ d\Lambda dE$$
Translate TRANSP flux to relative synthetic lost flux by summing over EP dist. with weighting function w for every ion species *i*

$$w_{i}(R, Z, \Lambda, E) = f_{bias,i}(R, Z, \Lambda, E) \cdot f_{ap}(\Lambda) \cdot \delta(E - E_{dep,i})$$

$$\Lambda = v_{\parallel}/v$$
Bias in binary
$$\Lambda = v_{\parallel}/v$$
Bias in binary
$$f_{bias,i} = \begin{cases} 1, \ f_{rev,i}(R, Z, \Lambda, E) \neq 0 \\ 0, \ otherwise \end{cases}$$

#### **Biasing Artificially Inflates Loss Counts to Weaker Mode Amplitudes**

Weaker modes = smaller ORBIT-kicks = smaller smearing factors

9/20/21

- Particles with weaker mode amplitudes will be initialized closer to the loss boundary and inflate loss counts
- Solution: Scale loss flux w.r.t. to the kick-subdistribution relative to the entire EP distribution

![](_page_36_Figure_4.jpeg)

Scaled Loss Counts

$$\Gamma_{ORB} \to \Gamma_{ORB} \frac{\int f_{NUB} dV_{kick}}{\int f_{NUB} dV_{NUB}}$$

- Limit  $dV_{kick} \rightarrow 0$ : losses ignored ٠
- Limit  $dV_{kick} \rightarrow dV_{NUB}$ : recover ۲ uniform sampling

#### **Representative Kink Mode Structure was Found** with the NOVA<sup>a</sup> Code

- Mode was identified as a kink mode via EXE and SXR phase inversion, low mode numbers, & sawtooth precursors
- Only the n=1 mode and losses are considered: dominant m=1 with subdominant m=2-3 poloidal harmonics

![](_page_37_Figure_3.jpeg)

### Mode Amplitude is Constrained by Converging Loss Model with Experimental Measurement

![](_page_38_Figure_1.jpeg)

9/20/21

- <u>3x10<sup>5</sup> particles</u> used as input for each species; 0.5 ms integration time
- Convergence to  $\frac{\tilde{b}}{B} \sim 6e^{-3} 6e^{-4}$  between model and experiment
- Model error bars stem from count statistics
- Experimental signals are frequency filtered to the n=1 mode frequency
- Faraday cup detector array has not been absolutely calibrated so only relative measurements are of use
- Foil 1 measurement is discarded/corrected in the other foils due to capacitive plasma pickup<sup>a</sup>

# Relative Signal by Ion Species Can be Resolved with the Synthetic Diagnostic

#### **Distribution of Ion Signals Across Foils**

![](_page_39_Figure_2.jpeg)

- Impossible to know from Faraday cup measurements
   alone
- Scintillator-probe PMT losses indicate strong deuteron and triton losses which is in good agreement with the model
- NOTE: Deuteron component of the signal dominates each respective foil measurement because  $n_{NBI} \gg n_{fus}$  (marker weights)
- Very useful information for multi-ion species plasmas such as DT-ops

## Agreement Between Model and Experiment Exists within Errors

- 3x10<sup>5</sup> particles for each species and total computational time is ~7500 computer hours (3 ion species and 4 mode amplitudes)<sup>a-b</sup>
- Improvements: Minor scaling factors to account for (E,pitch) sampling dependence, particle reinjection, toroidal deposition

#### Raw Loss Counts to Pylon 1 Faraday Cup 3

| lon<br>Species | Foil 1 | Foil 2 | Foil 3 | Foil 4 |
|----------------|--------|--------|--------|--------|
| Deuts.         | 0      | 10     | 20     | 6      |
| Triton         | 50     | 386    | 0      | 0      |
| Proton         | 0      | 0      | 36     | 180    |

![](_page_40_Figure_5.jpeg)

<sup>a</sup>Sipila (NuclFus 2021). <sup>b</sup>Garcia-Munoz (RSI 2016)

9/20/21 Fast Ion T

#### Conclusions

- An integrated model for fast ion transport and losses has been constructed to mimic measurements from JET's Faraday cup FILD array with the TRANSP and ORBIT codes (*Bonofiglo NuclFus 2021 Submitted Soon*)
  - Increased computational efficiency due to a reverse integration biasing scheme which skews sampled particles toward an increased likelihood of detection
  - Vetted against an experimentally observed kink mode induced losses with high NBI and ICRF heating
  - Relative lost EP fluxes are in good agreement between model and experiment

![](_page_41_Picture_5.jpeg)

#### **Future Work**

- Examine other loss mechanisms (NTM, fishbone, sawteeeth, AE, etc.) in more plasma scenarios on JET:
  - Use full poloidal distribution of Faraday cups
  - Use scintillator probe FILD geometry
  - DT-alpha losses due to EP instabilities are occurring today!
- Further improvements to the reduced model:

9/20/21

- Use purely reverse particle integration
- Use reverse Monte-Carlo schemes<sup>a-b</sup>
- Extend model to other devices (NSTX-U, MAST-U, DIII-D)
- Form a time-dependent, self-consistent, model for fast ion losses:
  - Incorporate my reduced EP loss model into TRANSP to supplement the NUBEAM submodule
  - Ongoing work to incorporate ORBIT-kick with multi-EP species into TRANSP

<sup>a</sup>Zonta (EPS 2021) <sup>b</sup>Hirvijoki arXiv:1905.04952

# BACK UP SLIDES

![](_page_43_Picture_1.jpeg)

## **Energetic Particles Can Destabilize Shear-Alfvén** Waves

- Continuum (energetic particle mode) and gap mode (Alfvén eigenmode) instabilities require<sup>a</sup>:
  - 1. Free energy source to drive instability spatial gradient in fast ion distribution
  - 2. Resonance between wave and fast ions

9/20/21

![](_page_44_Figure_4.jpeg)

## **Energetic Particle Bursts React Strongly to the Changing Equilibrium**

• Bursts up-shift in frequency with growth in the n=5 perturbation and then disappear

![](_page_45_Figure_2.jpeg)

9/20/21

### **Electron Density Perturbations Resolve Spatial Structure of Alfvénic Modes**

![](_page_46_Figure_1.jpeg)

## STELLGAP Solved Alfvén Continua Describe Mode Frequency Response

![](_page_47_Figure_1.jpeg)

### **EP Instability Tracks Well with AC Minima**

- Localized density perturbations track extrema in the AC
- AC minima suggest extrema modes (RSAE, GAE, BAE, etc.) → Make no attempt to ID mode

![](_page_48_Figure_3.jpeg)

![](_page_48_Picture_4.jpeg)

## Rate of Change of Neutron Flux Exposes Tearing Effects on Fast Ions

 $D + D \rightarrow {}^{3}He(0.82 \,\text{MeV}) + n(2.45 \,\text{MeV}) 50\%$ 

![](_page_49_Figure_2.jpeg)

![](_page_49_Figure_3.jpeg)

- Neutron signals decrease with rise in core tearing mode amplitude
- Secondary modes in QSH tend to destroy fast ion confinement more quickly

#### **RFP Superbanana Orbits Remain Confined**

- Below made with full orbit code
- RFP benefits: favorable GC drifts; high rotational transform
- Helical RFP like omnigenous stellarator<sup>a</sup>:  $<ec{v}_d\cdotec{
  abla}\psi>\sim 0$

![](_page_50_Figure_4.jpeg)

#### <sup>a</sup>Cary and Shasharina (PRL 1997)

9/20/21

## Fast Ion Island Overlap Increases with QSH Transition

![](_page_51_Figure_1.jpeg)

9/20/21

## Fast Ion Stochasticity Approaches Magnetic Stochasticity in QSH

![](_page_52_Figure_1.jpeg)

9/20/21

## Fast Ion Diffusivity Consistent with RR-Like Transport

![](_page_53_Figure_1.jpeg)

Rechester & Rosenbluth (PRL 1977) Biewer (PRL 2003)

Subdominant Mode Dependence

 $D_{\rm RR} = \pi R v_{fi} \sum_{m,n} \frac{b_r^2}{B_\phi^2} \delta(m - nq)$  $D_{\text{ORBIT}} = v_{fi} \frac{\langle \Delta r^2 \rangle}{2L}$ 

- Diffusive step-size on order of the n=5 fast ion GC island width
- RR transport is a function of the subdominant mode amplitudes
- Observed transport is consistent based on large n=5 island coupled with overlapping subdominant resonances

# A Faraday Cup Fast Ion Loss Detector was Designed for the RFP

![](_page_54_Figure_1.jpeg)

Fast Ion Transport and Confinement in JET and the 3D-RFP (Bonofiglo – NSTX-U 21)

9/20/21

## Lost Ion Signal is Observed During NBI Heated Plasmas

- Negative signal implies strong electron noise
- Minimal losses and extension beyond beam turn off is indicative of well-confined nature of fast ions
- Improvements: mitigate electron noise, better geometrical cup design, increase amplifier gain

9/20/21

• FILD is not suitable in 3D-RFP plasmas due to probe outgassing and the need for density control

![](_page_55_Figure_5.jpeg)

Bonofiglo (RSI 2016)

#### JET Features Two Fast Ion Loss Detectors

#### Scintillator Fast Ion Loss Detector<sup>a</sup>

![](_page_56_Figure_2.jpeg)

![](_page_56_Figure_3.jpeg)

- Functions like a mass spectrometer
- More sensitive to fusion products
- Good energy and pitch resolution
- Single spatial position

#### Faraday Cup Fast Ion Loss Detector Array<sup>b</sup>

![](_page_56_Picture_9.jpeg)

#### Faraday Cups

- Sensitive to "lower energy" (RF-tail) fast ions
- Decent energy resolution and limited pitch resolution
- Wide spatial resolution poloidally and radially

<sup>a</sup>Baeumel (RSI 2004) <sup>b</sup>Darrow (RSI 2004, 2006, 2010)

9/20/21

### **Additional Model Information: Poloidal Dependence & Orbit Topologies**

- Only 7 FCs were fitted with appropriate data acquisition hardware for this discharge
- Spatial sensitivity of losses can be examined from the model and compared to experiment
- Most losses occur from counter-passing and trapped orbits

![](_page_57_Figure_4.jpeg)

**Poloidal Dependence** 

9/20/21

### ORBIT is Being Converted to Integrate Particle Motion Backward from the Detector

- No biasing needed! All orbits should be collected by the FILD
- ORBIT-kicks work both forward and backward in time
- Employ similiar weighting scheme from TRANSP EP dist.
- ORBIT highlights:
  - 1. Functionality in the vacuum region
  - 2. Finite-Larmour radius position computed

![](_page_58_Figure_7.jpeg)

![](_page_58_Picture_8.jpeg)

#### Foil Stacks are Susceptible to Capacitive Plasma Pickup

- The front foil is plasma facing and couples to MHD activity<sup>a</sup>. The foils can then capacitively couple to one another allowing noise pickup to traverse the stack
- Impossible to distinguish real fast ion losses from MHD activity (kinks, NTMs, AEs, etc.) vs. pickup noise
- Best way to eliminate this is through hardware changes

![](_page_59_Figure_4.jpeg)

9/20/21

#### Recent Hardware Upgrades<sup>a</sup> have been Performed to Remediate Past Issues

#### **Detector Limitations**

- 1. Large amount of foil-to-foil and foil-tomachine shorts
- 2. High freq. noise pickup from ambient surroundings
- 3. Amplifier noise and breaking
- 4. Limited analysis -> 5 kHz sampling rate

#### Old Acquisition

- 16-bit, bipolar linear amps
- $\pm 200 \ \mu$ A range

9/20/21

• 5 kHz sampling rate ADC

#### **Recent Upgrades**

- 1. Installed thicker foils in a 4-stack design to prevent foil-to-foil shorts
- 2. Installed superscreen cabling to hinder ambient noise pickup
- 3.–4. New 200 kHz ADC and amplifiers

#### New Acquisition

- 16-bit, bipolar linear amps
- $\pm 2000 \,\mu$ A range
- 200 kHz sampling rate ADC
- Each channel is fully controllable via software

#### **Energy Resolution is Determined by the Foil Stack Configuration**

![](_page_61_Figure_1.jpeg)

9/20/21

- Resolution determined by foil and insulator choice, thicknesses, ion species
- MeV scale ICRH heated deuterium NBI ions act as a proxy for fusion born DT alpha particles in deuterium plasmas
- The Faraday cup signals (left) are correlated with modulated ICRH input power indicative of heated deuteron losses

| Depth ( $\mu$ m)           | Proton<br>Energy<br>Range (Mev) | Deuteron<br>Energy<br>Range (Mev) | Triton<br>Energy<br>Range (Mev)  | He3 Energy<br>Range (Mev) | Alpha Energy<br>Range (Mev) |
|----------------------------|---------------------------------|-----------------------------------|----------------------------------|---------------------------|-----------------------------|
| 0.0 – 2.5                  | 0.0-0.49                        | 0.0-0.49                          | 0.0 - 0.50                       | 0.0 – 1.55                | 0.0 - 1.54                  |
| 5.0 – 7.5                  | 0.68 – 0.96                     | 0.79 – 1.10                       | 0.84 - 1.20                      | 2.30 - 3.35               | 2.48 - 3.55                 |
| 10.0 - 12.5                | 1.10 - 1.32                     | 1.35 – 1.60                       | 1.48 - 1.76                      | 3.90 - 4.70               | 4.17 – 5.09                 |
| 15.0 - 17.5                | 1.45 – 1.65                     | 1.78 – 2.00                       | 2.00 - 2.25                      | 5.20 - 5.80               | 5.60 - 6.35                 |
| $\Delta E / E = 10 - 35\%$ |                                 |                                   | <sup>†</sup> Found via SRIM code |                           |                             |

Energy Range per Foil<sup>1</sup>

#### **More FILD Loss Measurements**

- Deuterium plasmas with MeV scale ICRH heated deuterium NBI ions which act as a proxy for fusion born DT alpha particles
- Fusion products:  $D+D \rightarrow H^3(1.01 \text{ MeV})+p(3.02 \text{ MeV})$  and  $D+He^3 \rightarrow He^4(3.54 \text{ MeV})$

![](_page_62_Figure_3.jpeg)

9/20/21 Fast Ion Tre

#### Strong Kink Modes and Sawteeth are Present for Fast Ion Transport

• Presence of phase inversion near the magnetic axis confirms kink activity in conjunction with sawteeth

![](_page_63_Figure_2.jpeg)

4/20/21 Fast Ion Losses in JET for Model Validation and Predictive Analysis (Bonofiglo - TTF '21)

# Scintillator FILD Measures Losses for a Similar Discharge

 Scintillator FILD<sup>a</sup> timing was incorrect for shot 96133, but was corrected for the repeated shot 97493

![](_page_64_Figure_2.jpeg)

#### <sup>a</sup>Baumel RSI 2004

# The Reverse Integrated Distribution is not Directly Comparable to that of TRANSP/NUBEAM

![](_page_65_Figure_1.jpeg)

Fast Ion Transport and Confinement in JET and the 3D-RFP (Bonofiglo – NSTX-U 21)

9/20/21

#### The q=1 Surface was Better Constrained from ECE Measurements

- Original equilibrium was magnetics+pressure EFIT (MSE was not active during this discharge)
- q=1 inversion surface was found from sawtooth effects in ECE and SXR (not shown)

9/20/21

• An initial q(0) is provided to TRANSP to seed the predictive PT-SOLVER<sup>a</sup> and give the q=1 location

![](_page_66_Figure_4.jpeg)