Resistive Stability and Shape Optimization Research on NSTX-U

By: C. Paz-Soldan Columbia University

Presented to: NSTX-U Research Meeting Oct 4th 2021

Paz-Soldan / 2021-10

Project Consists of Two Central Topics

OLUMBIA

LENGINEERING

The Fu Foundation School of Engineering and Applied Science

Why do we care?

- Uncorrected error fields can limit plasma performance, ex: NSTX(-U)
- NSTX-U designed to have low error, but need to be ready just in case
- Opportunity to advance the error field state of the art
 - Demonstrate / deploy state-of-the-art control techniques for practical use

NSTX-U Objectives of Interest:

- Obj #2: Develop operation at large bootstrap and advance physics basis for high performance NI plasmas (w/o disruptions)
- If error fields are big, interaction with more of the program (gulp!)

Key Collaborators:

• S. Munaretto, N. Ferraro, J-K. Park, D. Boyer (PPPL), E. Kolemen (PU), A. Wingen (ORNL)

Error Field Project Sequence:

- Source model: translate metrology data into a viable reduced model
- First Plasma: Validate EF source model against compass scan data w/ GPEC
- Adaptive algorithm: Use look-up tables/NNs to rapidly calculate correction
- IF error field is a big problem: implement algorithm into PCS
 - IF NOT: shift to study of classical / neoclassical tearing in later years
- Also pursue foundational studies of centerpost tilt/shifts to inform above

- As-built metrology data
 - Generated by "East coast metrology" sub-contractors
- NSTX-U commissioning time
 - Validate model w/ compass scans (will happen anyway)
- IF Error Field "Big": PCS support to implement algorithms (down the line)

Why do we care?

- Negative delta offers an alternate path to core-edge integration
- Move pressure gradient from the edge (no ELMs) to the core
 - Goal: L-mode edge with H-mode confinement
- What are the synergies with low-A? What can NSTX-U validate?

NSTX-U Objectives of Interest:

 Obj #3: Develop and evaluate conventional and innovative power and particle handling techniques to optimize plasma exhaust

Key Collaborators:

• D. Battaglia (PPPL), K. Thome, J. McCleneghan, O. Meneghini (GA), E. Unterberg (ORNL), S. Saarelma (CCFE)

Negative-Delta Project Sequence:

- Predict first: Int. model to see what low-A neg-D plasmas look like
- Equilibria: GSdesign to see what's compatible with NSTX-U coils
- H-mode inhibition: Deploy n=inf stability model to NSTX-U geometries
- PCS emulation: combine GSdesign and GSevolve in emulation models
- PFCs: Deploy HEATS (ORNL) model to assess PFC limit (passive plates)
- Realization(?): Up-down asymmetric (regular divertor) or symmetric shots

Preliminary Look at Performance

Use STEP (TGYRO, CHEASE) to evaluate NT performance in spherical tokamaks

NSTX-U

- Assistance to get modeling tools up and running (already happening)
- Propose experiments down the line (where sensible)
 - Asymmetric shape shape uses regular divertor structures

Project Team / Staffing:

NSTX-U

Looking forward to working together !