

Design and current status of the SMall Aspect Ratio Tokamak – SMART –

M. Garcia-Munoz

A. Mancini, J. Segado-Fernandez, E. Viezzer, M. Barragan-Villarejo, S. J. Doyle, M. Agredano-Torres, J. Ayllon-Guerola, P. F. Buxton, J. Chung, M. Freire-Rosales, J. Galdon-Quiroga, J. García-Lopez, J. L. Garcia-Sanchez, M. P. Gryaznevich, S. Hwang, J. M. Maza, J. F. Rivero-Rodriguez, M. Toscano-Jimenez, L. Velarde-Gallardo and the PSFT team

Spherical Tokamaks Offer Attractive Path to Fusion Reactor

- Compact configuration
- Natural elongation
- High Beta
- High density limit
- Less major disruptions
- Good energy confinement

M. Gryaznevich et al., PRL 1998 D. C. Robinson PPCF 1999

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 2

Attractive core confinement and power handling for future fusion reactors

• L-Mode with H-mode like core pressure levels and no pedestal

Attractive core confinement and power handling for future fusion reactors

• L-Mode with H-mode like core pressure levels and no pedestal

Core

- Improved thermal plasma transport
 - -δ features lower experimental electron heat diffusivity than similar +δ
 - Reduced ITG and TEM

G. Rewoldt *et al.*, PoF 1982
J.-M. Moret *et al.*, PRL 1997
Y. Camenen *et al.*, NF 2007
A. Marinoni *et al.*, PPCF 2009, PoP 2019, NF 2021
M. E. Austin *et al.*, Phys. Rev. Lett. 2019

Attractive core confinement and power handling for future fusion reactors

• L-Mode with H-mode like core pressure levels and no pedestal

Core

- Improved core thermal plasma transport
- Improved fast-ion confinement
 - Reduced AE activity
 - Larger fast-ion content

M. Garcia-Munoz *et al.,* EPS 2021 P. Oyola *et al.,* IAEA TM EP 2021

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 5

me changer U

ERSIDA

Attractive core confinement and power handling for future fusion reactors

• L-Mode with H-mode like core pressure levels and no pedestal

Core

- Improved core thermal plasma transport
- Improved fast-ion confinement
 - Reduced AE activity
 - Larger fast-ion content

MEGA hybrid kinetic-MHD simulations - 1000 0.4 0.4 - 90 750 0.3 0.3 adial velocity v_ψ [m/s] 60 500 0.2 0.2 250 30 Height [m] Height [m] 0.1 0.1 0 -30 -250 0.0 0.0 -500 -60 -0.1-0.1-750 -90 -0.2 -0.2 -1000-120 0.8 0.9 1.0 0.8 1.0 0.7 1.1 Major Radius [m] Major Radius [m]

Wave-particle interaction occurs at higher resonance harmonics in $-\delta$ than $+\delta$

M. Garcia-Munoz *et al.,* EPS 2021 P. Oyola *et al.,* IAEA TM EP 2021

Attractive core confinement and power handling for future fusion reactors

• L-Mode with H-mode like core pressure levels and no pedestal

Core

- Improved core thermal plasma transport
- Improved fast-ion confinement

Edge

• No pedestal > No ELMs

Attractive core confinement and power handling for future fusion reactors

• L-Mode with H-mode like core pressure levels and no pedestal

Core

- Improved core thermal plasma transport
- Improved fast-ion confinement

Edge

• No pedestal > No ELMs

Attractive core confinement and power handling for future fusion reactors

• L-Mode with H-mode like core pressure levels and no pedestal

Core

- Improved core thermal plasma transport
- Improved fast-ion confinement

Edge

- No pedestal > No ELMs
- Low impurity retention
- Wider scrape-off layer heat flux

Attractive core confinement and power handling for future fusion reactors

• L-Mode with H-mode like core pressure levels and no pedestal

Core

- Improved core thermal plasma transport
- Improved fast-ion confinement

Edge

- No pedestal > No ELMs
- Low impurity retention
- Wider scrape-off layer heat flux

Divertor naturally placed at larger radii

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 10

Attractive core confinement and power handling for future fusion reactors

• L-Mode with H-mode like core pressure levels and no pedestal

Core

- Improved core thermal plasma transport
- Improved fast-ion confinement

Edge

- No pedestal > No ELMs
- Low impurity retention
- Wider scrape-off layer heat flux

Divertor naturally placed at larger radii

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 11

But This Comes with a Price: Reduced Stability Limits

- Current driven (kink) modes: lower safety factor @ same current
- Elongation limits: higher vertical instability growth rates
- Pressure driven (ballooning) modes: lower predicted beta limits

But This Comes with a Price: Reduced Stability Limits

- Elongation limits: higher vertical instability growth rates
- Pressure driven (ballooning) modes: lower predicted beta limits

Multi-machine experiments needed to explore stability limits and develop NT scaling laws

• STs with lower toroidal magnetic fields and higher beta limits might be especially attractive

S.Yu. Medvedev *et al.,* Nucl. Fusion **55** 063013 (2015)

Outline

SMART's missions

Magnetic equilibrium and prospective discharge scenario

Device

- Vacuum Vessel
- Coils configuration
- Power supply
- Diagnostics
- ➤ Timeline

Summary

Outline

> SMART's missions

> Magnetic equilibrium and prospective discharge scenario

Device

- Vacuum Vessel
- Coils configuration
- Power supply
- Diagnostics
- ≻ Timeline

> Summary

SMART: new spherical device currently being assembled at University of Seville as **attractive**, **fast** and **economic path**

to **compact fusion reactors** with high power densities

SMART's missions include:

- Training of next generation of fusion physicists and engineers
- Study plasma confinement and stability in positive vs.
 negative triangularity
- Develop novel diagnostic and plasma control techniques
- Develop alternative exhaust techniques

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 16

A. Mancini et al, Fus. Eng. Des. 171 112542 (2021)

SMART – SMall Aspect Ratio Tokamak

Main Parameters of SMART

- Vacuum vessel dimensions: 1.6 x 1.6 m
- 12 toroidal field coils, 8 poloidal field coils, 1 solenoid
- Major radius R = 0.45 m
- Minor radius a = 0.25 m
- 3 operational phases foreseen

Parameters	Phase 1	Phase 2	Phase 3
Plasma Current [kA]	100	>100	<500
Toroidal field [T]	0.1	0.3	1.0
Flat-top duration [ms]	150	>150	500
Microwave heating [kW]	6	6	200
Neutral beam injection [MW]	-	1	1

A. Mancini *et al*, Fus. Eng. Des. **171** 112542 (2021)

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 17

Outline

SMART's missions

Magnetic equilibrium and prospective discharge scenario

Device

- Vacuum Vessel
- Coils configuration
- Power supply
- Diagnostics
- ≻ Timeline

> Summary

Prospective Discharge Scenario

- FIESTA solves Grad-Shafranov equation \rightarrow Determine j from β_{pol}
 - \rightarrow Output: Plasma and vessel eddy currents
- Asymmetric solenoid ramp:
 - Formation of null-field: 16ms
 - Breakdown timescale: 8 ms
 - Transition timescale: 20 ms
 - Flat-top duration: 100 ms

Prospective Discharge Scenario

- FIESTA solves Grad-Shafranov equation \rightarrow Determine j from β_{pol}
 - \rightarrow Output: Plasma and vessel eddy currents
- Asymmetric solenoid ramp:
 - Formation of null-field: 16ms
 - Breakdown timescale: 8 ms
 - Transition timescale: 20 ms
 - Flat-top duration: 100 ms
- Solenoid induced breakdown:
 - Sustained 8 ms ramp: -0.3 kA/s
 - Induces toroidal voltage: $V_{loop} = -2.3 V$

Prospective Discharge Scenario

- FIESTA solves Grad-Shafranov equation \rightarrow Determine j from β_{pol}
 - \rightarrow Output: Plasma and vessel eddy currents
- Asymmetric solenoid ramp:
 - Formation of null-field: 16ms
 - Breakdown timescale: 8 ms
 - Transition timescale: 20 ms
 - Flat-top duration: 100 ms
- Solenoid induced breakdown:
 - Sustained 8 ms ramp: -0.3 kA/s
 - Induces toroidal voltage: $V_{loop} = -2.3 V$
- I_p growth in 2 stages, $I_p = 100$ kA for 100 ms \rightarrow PF and DIV coils in equilibrium configuration

Plasma equilibria for $I_p = 100 \text{ kA}$, $B_t = 0.3 \text{ T}$

• **Baseline equilibrium** – max. elongation $\rightarrow A = 1.85, \kappa = 2, \delta = +0.2$

triangularities

Aim for flexible shaping, including positive and negative

Plasma Shaping Controlled by PF and DIV Coils

- Aim for flexible shaping, including positive and negative triangularities
- Plasma equilibria for $I_p = 100 \text{ kA}, B_t = 0.3 \text{ T}$
- Baseline equilibrium max. elongation \rightarrow A = 1.85, κ = 2, δ = +0.2
- **Positive triangularity** min. elongation $\rightarrow A = 1.85, \kappa = 1.63, \delta = +0.42$

.85, $\kappa = 1.63$, $\delta = +0.42$

• Negative triangularity – max. triangularity $\rightarrow A = 1.88, \kappa = 1.63, \delta = -0.5$

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 24

- Aim for flexible shaping, including positive and negative triangularities
- Plasma equilibria for $I_p = 100 \text{ kA}, B_t = 0.3 \text{ T}$
- Baseline equilibrium max. elongation → A = 1.85, κ = 2, δ = +0.2
- Positive triangularity min. elongation \rightarrow A = 1.85, κ = 1.63, δ = +0.42

 $-\delta$ Equilibrium

DIV1 DIV2

1.0

(t = 40 ms)

0.0090

Plasma Shaping Controlled by PF and DIV coils

Phase 3 Explores Wide Shaping Range at Relatively High I_p / B_t

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 25

ASTRA Predicts Boost in Confinement From Phase 1/2 to Phase 3

> Transport simulations carried out for most up-to-date baseline scenario

- \succ Transport coefficients scale with I_p and B_t, no change in pre-factors
- Expected rise in density and temperature profiles

Full Orbit ASCOT Code Used To Optimize NBI Heating

- Monte-Carlo full orbit **ASCOT**^[3] code with
 - Realistic profiles from ASTRA
 - 2D wall
 - NBI parameters / geometry
 - 1M particles (25 keV, H beam)
 - Beam divergence (aperture of beam)
 - Focal distance of beam
- Scan in beam tangency radius to
 - Minimize shine-through
 - Minimize prompt losses
 - Maximize beam current drive

Optimum Configuration for OFF-axis Heating

ID	Rtan [m]	Shine- through	Prompt Iosses	Current drive	
1	0.36	-	4.5%	0.69	
2	0.4	4.3%	0.5%	0.66	
3	0.44	4.8%	0.0039%	0.64	

- Tangency radius of 0.4m → minimizes total losses (<5%)
- Next steps include losses induced by:
 - TF ripple
 - CX reactions
 - MHD fluctuations

Pending confirmation with TRANSP sims

for different scenarios

L. Velarde, MSc thesis (2021)

ERSIDA

Outline

SMART's missions

Magnetic equilibrium and prospective discharge scenario

Device

- Vacuum Vessel
- Coils configuration
- Power supply
- Diagnostics
- ➤ Timeline

> Summary

SMART Vacuum Vessel

- Overall height of 2,6 m
- Diameter of 2,1 m
- Upper Lid **bolted** and Lower Lid **welded**
- 2 rectangular ports 30×80 cm for NBI and maintenance purposes (customized one)
- 6 lateral ports with CF 300 DN and 24 CF 100 DN
- 6 upper ports & 4 lower ports CF 100 DN
- 4 lower ports CF 250 DN for vacuum
- Mixed thickness (18 mm, 8 mm and 3 mm)
- 12 body ribs and 12 upper and lower lid ribs (15 mm thick)
- Material stainless steel AISI 316 L
- Vacuum 10⁻⁸ mbar
- Leak rate 10⁻⁸ mbar*lt/s

Vacuum Vessel Design Optimised with Realistic Finite Element Analysis

Optimization criteria

- Minimization of induced eddy current
- Ensure mechanical integrity against transient (JxB forces) and static loads (pressure)
- Ensure Ultra High Vacuum (UHV) during operation and baking
- Covers all three phases without important changes and including off-normal events, e.g. VDE, disruptions...

Max loads during VDE in phase 3

SMART Coils

Coil dimensions obtained by iterative process including target plasma parameters and technical restrictions

- DIV1, DIV2 and PF2 coils are placed inside for improving physics performance (control) and reducing coils current
- PF1 and TFC are left outside
- Supports of TFC and PF1 are attached to VV ribs
- Inner coils support attached to lids through welded bolts
- Inner coils supports accommodate deformation during baking

Poloidal Field Coils

8 Poloidal Coils for shaping and plasma control

- All coils with 24 turns except DIV1 with 35 turns
- Coils made of H enamel-coated LUVATA (OFHC) copper with inner hole for cooling during pulse and baking operation @ 150-200 °C
- Kapton insulation between turns

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 33

Solenoid

230 turns of H enamel-coated LUVATA (OFHC) copper with Kapton insulation between turns

- Height = 1600 mm
- Diameter = 300 mm
- 11x11 mm conductor section with inner hole for cooling during/after pulse and baking

Toroidal Field Coils

• 12 toroidal field coils for a total of 48 number of turns (4 turns each)

Flexible joints of lamellae cooper

Central Stack (CS) – Design for Phase 2

Challenge: Accommodate TF coils inner limbs and solenoid within 300 mm diameter

- TF coils inner limb placed inside solenoid to reduce demand on power supply
- TF coils do not require cooling in phase 2
- Adjustments may have to be done to achieve phase 3 goals

CS Assembly

CS supporting structure is composed by:

- Pedestal
- Two torsional rings (upper/lower) housing TFC inner limbs and withstand torsional loads
- A central rod helps reacting centering force
- Set of bars helps maintaining position of the rod during the assembly and transfer loads to central rod
- Six arms connects the two rings to the ribs of the vessel
- Lower ring withstands solenoid weight

Finite Elements Analysis Predicts Negligible Forces in Coils During Phase 2

LC1

-20

20

 10×10^5

(NNA)

- Loading Cases (LC) used to estimate forces on each coils assuming all other fields
- PFCs:
 - Vertical loads due to attraction / repulsion
 - Hoop load generate negligible stresses in coils

• TFCs:

- Constant in-plane loads
 < 90 kN
- Out-of-plane loads in external legs are negligible

Vertical load	Force ₁ [N]	Force ₂ [N]	Force ₃ [N]
PF1	2	2468	1933
PF2	39	201	129
DIV1	894	313.6	296
DIV2	192	0	0

t(ms)

LC2

100

120

Plasma

CS

DC1

DC2

TFC

160

140

LC3

PFC1 PFC2

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 39

Modular power supply based on suparcaps and IGBTs for fast switching (H-bridge as converter)

- Power supply allows arbitrary current waveform between the specified limits
- Current waveforms are totally programmable before discharge (FPGA)
- Positive and negative currents are possible
- Coil current ripple < 2% of maximum current
- Closed loop control in real time

Power Supply

Diagnostics

Diagn	ostic Method	Remark	1/m² Gas puff imaging10'°	$1/m^2$
Magnetic	Rogowski Coil	3 out-vessel 2 in-vessel	0.5	
Diagnostics	Pick-up Coil	48 pick-up coils		
	Flux Loop	10 loops		
Optical Diagnostics	Gas puffing CXRS	Profiles of n_i and T_i		1011
	Interferometer	Line integrated n _e	▷ 0.0	10^9
	Fast camera (Phantom v2512)	< 1MHz		
	Soft X-ray array	AXUV16ELG Photodiode	-0.5	10 ⁶
	Thomson Scattering	Nd:YAG Laser 1.2J/pulse 10ns	Injected neutrals 0.0	Halo 0.0
Particles	Langmuir probes	Midplane and strike points	R [m]	0.2 0.4 0.6 0.8 R [m]

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 40

Outline

SMART's missions

Magnetic equilibrium and prospective discharge scenario

➢ Device

- Vacuum Vessel
- Coils configuration
- Power supply
- Diagnostics

> Timeline

> Summary

Project Timeline

Status of Tokamak Buildings

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 43

Tokamaks Components Are Being Assembled

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 44

Outline

SMART's missions

Magnetic equilibrium and prospective discharge scenario

Device

- Vacuum Vessel
- Coils configuration
- Power supply
- Diagnostics
- > Timeline

Summary

M. Garcia-Munoz | Seminar at NSTX-U/MFE Monday Meeting | ZOOM | November 22 - 2021 | Page 46

Summary

- SMART a new and exciting, compact spherical tokamak will be coming online soon
 - Train next generation of fusion physicists and engineers
 - Study plasma confinement and stability in PT and NT
 - Develop novel diagnostic and plasma control techniques
 - Develop alternative exhaust techniques
- Please, contact us for potential collaborations!

mgm@us.es eviezzer@us.es

