

ELM elimination with impurity powder injection in EAST and MHD effect on liquid metal flow

<u>Z. Sun¹, R. Maingi¹, Y.Z. Qian², F. Saenz³, A. Diallo¹, K. Tritz⁴, B. Wynne³, E. Kolemen^{1,3}, Y.F. Wang², Y.M. Wang², A. Bortolon¹, A. Nagy¹, L.</u> Zhang², Y.M. Duan², Y. Ye², H.Q. Wang⁵, G.Z. Zuo², W. Xu², L. Wang², G.S. Xu², X.Z. Gong², J.S. Hu², and EAST Team

- ¹Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08540, USA
- ²Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- ³Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
 - ⁴Johns Hopkins University, Baltimore, MD 21211, USA
 - ⁵General Atomics, P.O. Box 85608, San Diego, California 92186-5608, USA

Email: <u>zsun@pppl.gov</u>

NSTX-U / Magnetic Fusion Science Meetings Dec. 8, 2021

Professional experience

2015 obtain PhD in ASIPP 2015-2018 staff researcher in ASIPP lacksquare

- Build and develop Li coating as the most effective wall conditioning technology and study its impact on plasma performance on EAST PI for lithium powder/granule injection programs on EAST
- - ELM trigger by Li granule injection
 - Firstly achieve 18s ELM-free H-mode by Li powder injection
 - Real-time wall conditioning for 100s H-mode using Li powder
- Support for building liquid Li limiter/circuit and conduct experiments of liquid Li limiter on HT-7 and EAST

2018-Present post-doc in PPPL

- Lead impurity powder/granule injection programs on EAST Participate in impurity powder injection experiments on LHD and AUG
- Study MHD effect on LM flow in LMX

PFCs need to withstand steady and transient heat fluxes

Zhitlukhin JNM 2007

Steady-state heat fluxes & neutron fluxes

Transient heat fluxes e.g. Giant ELM

Solid/W wall: erosion, dust formation, high-Z impurity accumulation...

ullet

- ELMs, <1ms, resulting in 10x or larger increases in the peak divertor heat flux
- RMP, pellet pacing, etc
- Limitations
- **Alternative ELM control** methods are desired
- Liquid metal flow: very high steady and transient heat exhaust
- Liquid metal flow in magnetic needs more investigations

ELM mitigation by Lithium granule injection •

ELM suppression by Boron powder injection •

MHD effect on liquid metal flow \bullet

Summary

Impurity Powder Dropper enables injection of Ligranules on EAST with ITER-like W divertor

- EAST has a mix of PFC material
 - Upper Div.~ W Monoblock PFCs
 - Center stack ~ Mo tiles
 - Lower Div. \sim C tiles \rightarrow W(2021)

• Multi-impurity injection system based on linear piezoelectric powder feeder

-Li, B, Be, BN, Si, SiC, Sn...

–Particle size 5-1000? µm

- -Continuous/burst, controllable flow rate 2-250mg/s, calibratable
- Driven by gravity, ~10m/s
- Near the upper X-point
- 700 \pm 100µm spherical granule

Ligranule production

ELM mitigation sustained 2.8s (40XT_e) without core impurity accumulation

Z. Sun, NF, 2021

- q_{95} ~3.9, B_{t} =1.6T, USN, W divertor, δ =0.36, Co-NBI+LHW heating~4.5-5.1 MW, β_{N} ~1.5, Type-I ELM, same gas fueling
- P_{NBI} 3.5/4.1MW
- ~194mg/s, ~2000Hz (~5.1e10²² ele./s, plasma inventory ~2e10²² ele.)
- Da spike size reduced obviously
- Density and sored energy same as reference shot, reduced by ~7%
- C-VI decays gradually, no core W ramp-up
- Radiation 0.2 \rightarrow 0.5MW, saturated

Significant ELM mitigation, ~70%

- Da peak-valley by ~85%, $\Delta W_{ELM}/W$ ~6% \rightarrow ~1%, by 82%
- ELM frequency: regular, ~110 Hz \rightarrow less regular, ~85Hz

Maximum total particle flux ~70%, peak ion saturated current ~70%

Pedestal top pressure decreases by 25% but core increases 10%

- Core: Ti(0)↑~15-30%, ne0↑~10-20%, Te(0)↓<5%, P↑
- Pedestal: $ne\downarrow \sim 10\%$, $Te\downarrow \sim 20\%$, $J_{BS}\downarrow 50\%$, P and P' \downarrow
- confinement

Pedestal stable in peeling-ballooning instability by ELITE analysis

- destabilized
- Li case in stable region, high-n (n=25-30) narrow-radial-width ballooning modes moderately close to the PBM boundary
 - Small ELMs likely triggered by local effect of clustered granules, similar as D pellet

Nature ELM occupying PBM stability boundary conner, intermediate-n (n=5-15)

ELM mitigation by Lithium granule injection •

ELM suppression by Boron powder injection •

MHD effect on liquid metal flow

Summary

ELM elimination enabled by real-time B power injection Modest energy confinement improvement

- Constant density
- Causality demonstrated
- B flow rate threshold observed for ELM elimination observed
- elimination
 - Destabilized or intensified
- ELM elimination over a wide operating window of heating • shape

Z. Sun, PoP, 2021 A. Diallo, IAEA-FEC, 2021 R. Maingi, JoFE, 2020 Z. Sun, NF letter, 2021 R. Maingi, IAEA-FEC, 2021

Edge harmonic modes associate with B injection and ELM

Provide ample particle transport to avoid impurity accumulation in ELM stable plasmas power, electron density, collisionality, main ion species, plasma

Boron powder injection suppressed ELMs with constant density and slightly increased stored energy in EAST

- Same plasma condition
- $I_p = 0.5 \text{ MA}, B_t = 2.5 \text{ T}, P_{heat} \sim 6 \text{ MW}, \text{USN}, \delta^u \sim 0.57,$ δ^{l} ~0.27, ϵ ~1.65, grad-B drift \uparrow , toward upper X-point
- Type-I ELMs, $T_E \sim 64$ ms, $H_{98(v,2)} \sim 1$
- Edge B-V emission when B injected (from T_{e} ~ 150 eV)
- Stored energy increased slightly
- **Density stable and matched**
- Harmonic mode destabilized
 - Fundamental mode n=1

Injection time of B tracks well the ELM suppression phase

Same plasma condition

- **Reproduceable ELM suppression**
 - ELM suppression begins when B emission reaches to a threshold
- **ELM suppression phase strongly** correlated with B injection time

Energy confinement improves slightly

ELMs reappear after the B injection interrupted

ELM suppression during the B injection ●

ELMs reappear during the B_V declining • after B injection interrupted

- Clearly no wall hysteresis \rightarrow adequate for • including in the plasma control system
 - ~ 0.5 sec when boron injection is terminated

Flow rate range found for B injection to completely suppress ELMs

Observed lower threshold

- Too little, no effect on ELM
- ~6mg/s ELM mitigation
- ~8mg/s ELM elimination
- Marginal rate: $\sim 20\%$ below \rightarrow small ELMs reappear

Wide range of B injection flow rate compatible with plasma performance

- Upper limit ~10-20 times lower threshold flow rate for ELM elimination
- Too much cause collapse

Harmonic oscillation modes associated with ELM suppression by B injection

10

8

6

0

-2

-4

-6

-8

- Week harmonic mode observed before **B** injection
- **ELMs become less when the harmonics** become stronger
- ELM suppression begins when the BV emission reaches a threshold and the harmonic mode intensity saturate
- ELMs reappear when the B_v ramps down and the mode intensity reduces

Role of the harmonic fluctuations

Identification of coherent fluctuations with harmonics in many diagnostics

The mode exists in the pedestal region and SOL

 Fundamental modes observed in multi-channel Da, tangentially viewing midplane

 Appear inside and outside of separatrix, peaked fluctuation amplitude profile

Mode propagates poloidally away from the X-point

B-induced mode related with particle transport

A time delay between the mode in the upstream plasma measured by the XUV and the modulation of the ion saturation current

Time delay, ~180 μ s, close to the ion transit time ($\tau \| \sim 200 \mu s$)

Enhanced impurity transport to prevent core impurity accumulation

Impurity confinement time calculated during mode effect on the particle transport $\tau_{imn}^{mode} \sim 110ms$

Comparable with normal ELMy H-mode $\tau_{imp} \sim 200 ms$; significantly shorter than $au_{imp} \sim > 650 ms$ in the classic ELM-free H mode

Edge harmonic mode not observed for Li powder

Same plasma parameters

Li case:

- No mode observed
- **ELM** suppression

Boron case:

- Mode appears and remains active
- Core W reduces significantly

Robust ELM suppression over a wide range of conditions

Noted: succeeded in suppressing ELMs in every attempted condition

Not sensitive to heating scheme and power

- Wide range of input powder with different schemes

ELM suppression obtained with different lp & q95

Ip =350-570kA, 4.8< q_{95} <7.2, applicable for a high magnetic field tokamak

In He-plasmas: ELM suppression was also achieved

ELM suppression with LSN and lower W divertor

0.5MA, LSN, fav. Bt, P_{heat}~6MW, n_e~3.2x10¹⁹ m⁻³

ELM mitigation by Lithium granule injection

ELM suppression by Boron powder injection •

MHD effect on liquid metal flow

Summary

Free surface flow an optional choice for LM walls

- Analytical and simulation study for free surface flow conducted
- Experimental study of MHD effect is scarce
- Simulation or theory validation needs experiment results

S. Smolentsev FED 2021

LMX overview

- Rotary gear pump to circulate Galinstan 0-19GPM
 - Channel liner: plastic/copper/SS
 - Magnetic field: 0-0.33T
 - **Inclined angle: 0-7**
 - Laser sheet + camera \rightarrow LM height
 - Averaged velocity=Q/(height*width)
 - Surface velocity: particle tracking

Galinstan Surface

LM piled up in the channel inlet due to MHD drag

MHD brakes LM flow

LM thickness increases gradually from the outlet to inlet

Analytical model matches with experiment

- **Experiments show LM** height@inlet increases with ~B²
- **Analytical model fits well with** a proper K

 $P_1A_1 - P_2A_2 - \int_0^L P_{MHD}(x)A(x) \, dx = \rho \, Q \, (u_2 - u_1)$ $\begin{pmatrix} \rho g h_1^2 w \\ 2 \end{pmatrix} + \frac{\rho Q^2}{h_1 w} - K \sigma_{LM} Q B^2 L = \\ \begin{pmatrix} \rho g h_2^2 w \\ 2 \end{pmatrix} + \frac{\rho Q^2}{h_2 w}$

$$\frac{dP_{MHD}}{dx} \approx K \sigma_{LM} u B^2$$

First stimulation by OpenFOAM matches with experiment

Courtesy of J. Salami

Insulating wall or coating could be a solution to reduce the MHD drag

Ha~650, Re~2520, no nozzle, flat

- Plastic wall : increase by ~3%
- **Copper wall: increase by** ~30%

Z. Sun, NF, in preparation

Divertorlets concept

- Use many flow paths → reduce exposure time
 - $N = \frac{D_{exp}}{W}, u = \frac{D_{exp}}{t_{cr}} = \frac{D_{exp}}{t_{cr}}$ $\frac{D_{exp}/N}{t_{cr}}, N \uparrow u \downarrow$
- Reduce necessary speed for avoiding evaporation
- Reduce MHD drag

A. Fisher, Z. Sun, E. Kolemen, NME 2020

Conductive bars placed in every-other channel to produce effective pump

JxB force in combination with toroidal magnetic field and external current

High-conductive conductors take up the current and reduce jxB force

JxB difference between adjacent channels \rightarrow up and down liquid flow

Prototype built

- Copper-G10-copper sandwich
- Copper bars for conductors
- G10 sheet(air gap) increases current fraction through the conductor

Flow velocity measured by pitot tube

 h_2

• Galinstan

- Straight and L-shaped tubes placed in the channel with upward flow velocity
 - Galinstan column difference
 - L-shaped : static
 - Straight : static
 +dynamic

$P_1 + \frac{1}{2}\rho U^2 \approx P_2 \quad \Longrightarrow \quad \|\mathbf{U}\| \approx \sqrt{2g\Delta h}$

Flow speed increases with increasing external current

- Pump force is proportional lacksquareto the current density difference between consecutive channels and magnetic field
- **Experiment confirmed** upward velocity up to 0.4m/s
- Flow speed increases with lacksquareincreasing magnetic field

Stimulation results match with experimental results

- COMSOL
- Velocity increases from 0.05 to 0.4 m/s with current increasing from 100 to **900A**
- Peak flow speed at 0.2 T
 - Galinstan oxides on the walls reduce the MHD effect

Z. Sun, SOFE 2021

Summary

- For ELM elimination, a simple technology of solid particle injection by gravity was successfully demonstrated in EAST
- High flow rate Li granule injection suppressed larger ELM associated with depressed pedestal pressure and enhanced core pressure
- Robust ELM suppression by B powder was demonstrated over a wide range of plasma parameters, associated with low frequency harmonic modes
- LM accumulation in the free-surface flow caused MHD drag was observed
- Experiments demonstrated successful operation of the toroidal divertorlets concept, and simulations agree with experimental measurements of vertical velocity
- Open questions :

• • •

- > What is boron induced mode?
- Role of ion dilution effect on pedestal and core plasma? > Surface oscillations, MHD drag, and heat transfer for 'Divertorlets'?

Thank you for your attention

Large ELMs disappear and small ELMs triggered

Phase I: regular at ~110 Hz ± 10 Hz

• Transition phase II:

- Mixed small and large-amplitude ELMs
- Evidence for the granules triggering ELMs

ELM mitigation phase III:

- Averaged ~80Hz<<2000Hz, not all granules triggering ELMs
- Variable frequency, spreading in 30-220Hz
- Clustering likelihood with 3 or 4 granules ~3%-10% \rightarrow expected ELM freq.~60-200Hz

ELM triggered by granule in ELM-free H-mode

AUG N2 injection

Figure 1. Tomographic reconstruction of the radiated power for AUG #36655, the XPR is present.

Edge cooling is likely responsible for the depressed pedestal Te

- Radiation dominated in the upper divertor region

Channel with maximum value localizes the upper X-point, $\uparrow \sim 3.2x$

Pedestal ne reduction possibly stems from D recycling control with sufficient Li on the wall

Pedestal ne starts to decline as the D recycling control becomes more effective

Enhanced background turbulence and transport

EAST shot:80692

Pedestal density fluctuations **↑~50-100%**

- O-mode reflectometer
- Around the pedestal top
- No obvious increase in pedestal foot and steep region
- Particle flux between ELMs in ELM mitigation phase elevated $\sim 2X$, suggesting particles outward transport

Gravity assisted Li granule injection into plasma

- Two timings and two flow rates in four shots
 - High rate: 194mg/s ± 10,
 ~2000Hz
 - Low rate: $32 \text{ mg/s} \pm 2$, ~680Hz
- True color video shows Li granules go into upper divertor plasma, wider green region with higher flowrate

Reproducible ELM mitigation with modest stored energy reduction

- No Li, No mitigation
- High flowrate (194mg/s) and low power(3.5MW), $H \rightarrow L$ transition
- Too little Li(32mg/s), the effect discounted
- No $H \rightarrow L$ transition with high power(4.1MW)
- Earlier contacting plasma, earlier ELM mitigation, reproducible
- ELM mitigation accompanied with small W_{Dia} reduction, <10%

Boron on Te ne Ti

ELM suppressed over a wide range of ne and v_e^*

ELM suppression and the mode obtained with unfavorable B_t

- Total power~7.2MW
 - NBI~3.9, RF~3.3

USN, Reversed $B_T \sim 2.6T$, $B \times \nabla B \downarrow$

- Density and stored energy drops slightly ~5%
 - Perhaps due to the opposite drift direction

The mode not uniform along the poloidal cross section

Mode produces net transport and drives particles out from the core into the wall

- The mode onset, shown as the red line
- D_{α} baseline and W_{I} emission \uparrow
- $\widetilde{D_{\alpha}}/\overline{D_{\alpha}}:<1\% \rightarrow \sim 6\%$

Core W density & radiation

- The mode disappears, shown by the blue line
 - D_{α} baseline and $W_{I}\downarrow$
 - core W and radiation power 1

The mode can be observed with different impurity species

Boron

CD4

Boron is easiest to excite the EHM

Harmonic number is different

Mode appears on all poloidal section by Minrov probes

Mirnov probe arrays

n=1 mode indicated by Mirnov coil measurements

Boron species distribution by SLOPS

ELM suppression demonstrated in RF only discharges, paving the way for future long pulse demonstration

• Constant W_{MHD} and ne

Vloop~0.0V

Li ELM suppression related to pedestal density moving inward; ECM not enough strong to drive particles out

- Stronger ability Li pumping with metal wall \rightarrow pedestal density reduce \rightarrow ELM mitigation/suppression \rightarrow core density gradually ramp up, similar as NSTX
- No observation of enhanced ECM amplitude

Reversed Bt

The harmonic mode observed in Te and ne fluctuation

- XUV signal is proportional to $n_e^2 \times n_z \times f(T_e)$
- Observed the fundamental mode 0.89< ρ <0.95 by multichannel correlation ECE

Stronger intensity in edge density fluctuation measured by interferometer across pedestal than center

-5

-7

B-induced mode affects the particle transport

EAST #93153 Auto-power J_sat #07 upper inner 12 10 Freq. (kHz) 2 12 **Boron-induced ELM suppressed phase** 10 Freq. (kHz) 8 6 Auto-power Da #3 Upper Div. 3 4 5 6 Time(s)

EAST diagnostics

Observed frequencies in the pedestal from neoclassical (XGCa) modeling consistent with Geodesic Acoustic Mode

- X-point drop location important
- While the n=1 mode can be excited, coupling to an n=0 is not yet clear
- Future work: extension of simulation coupling boron ablation and turbulence in XGC

 Ablated Boron in X-point produces density perturbation akin of a density accumulation

A density perturbation in the X-point results in perturbation that effectively sensed poloidally (due the long connection length) is

 This density perturbation leads to poloidal asymmetries of charges

⇒ Resulting in a perpendicular velocity (e.g., in the radial direction)

 Asymmetries cause a radial current which transport charges across the magnetic surfaces

This current tends to reverse the perturbed E-field

➡Leading to a feedback and establishing a GAM-like mode

Origin of this mode?

Global parameters range for impurity dropper induced ELM suppression

The mode appears to help maintain a state with flat pedestal pressure gradient and low impurity concentration

Black (ELMy) \rightarrow Blue (ELM free) CD_4 seeding \rightarrow detachment \rightarrow edge recycling $\downarrow \rightarrow$ particle fueling $\downarrow \rightarrow$ pedestal electron density profile flatten; Impurity radiation cooling \rightarrow electron temperature \downarrow ; Pedestal pressure gradient and current density decrease by ~50% \rightarrow ELM suppression;

Blue (w/o the mode) \rightarrow Red (with the mode) CD_4 seeding $\uparrow \rightarrow$ pedestal top and foot density \uparrow , a low pedestal density and pressure gradient is maintained \rightarrow the state of ELM suppression and low impurity concentration is maintained.

However, the high-Z impurity concentration continuously increases.

A simplified theory for MHD drag in LMX

$$\sum F = \rho Q (u_2 - u_1) \qquad \mathsf{T}$$

$$P_1 A_1 - P_2 A_2 - \int_0^L P_{MHD}(x) A(x) \, dx = \rho \, Q \, (u_2 - u_1) \qquad \frac{dP_{MHD}}{dx} \approx K \sigma_{LM} \mathbf{u} B^2$$

$$\left(\frac{\rho g h_1^2 w}{2}\right) + \frac{\rho Q^2}{h_1 w} - K \sigma_{LM} Q B^2 L = \left(\frac{\rho g h_2^2 w}{2}\right) + \frac{\rho}{h_2}$$
$$K = \frac{C}{1 + \frac{w}{3h} + C} \qquad C = \frac{\sigma_w}{\sigma_{LM}} \frac{t_w}{w}$$

Assumptions:

- Steady-state, fully developed, inviscid flow
- Simple derivation based on electrical approach
- Uniform current density, expected to be valid for higher magnetic field, highly conducting walls, low conductive wall leads to a not uniform j

Fig. 1 Illustrative diagram for theoretical ⁵ o_f UB² (MPa/m) 0 analysis Fig. 6 Pressure gradient of Li flow in rectangular ducts under uniform B

> K. Miyazaki (1983). MHD Pressure Drop of Liquid Metal Flow in Circular and Rectangular Duct under Transverse Magnetic Field.

COMSOL simulation setup

- **Uniform height along channel length: 15mm.** •
- Uniform velocity profile at inlet. •
- Slip boundary condition at the "free surface",
- No-slip for side walls and bottom wall. •
- Symmetry applied at the center of the channel.
- Copper liner, thickness: 0.08 in ~ 2 mm.
- Scan for:
 - B = 0.1 T, 0.2 T, 0.3 T.
 - Flow rate: 7.89 L/min, 12.31 L/min, 16.64 L/min, 20.97 L/min. •
- **Dimensions of LMX channel.** ullet

	<u> </u>		ì
<	~	\geq	
	 		S

Detectable MHD effect in LMX with conductive and insulated wall

Profile of measured surface velocities

- Bubble and introduced particles tracking
- Surface velocity was increased along streamwise direction
- Across Y direction (channel width), velocity are close

74

Surface velocity increased as B field

- Surface velocity increases with B
 - Higher magnetic field generates stronger MHD drag
- Thickness of high-surface-velocity layer???
- How the high-velocity-region affect heat flux transport?
- Is high-velocity-region beneficial for surface refresh, e.g. improving recycling control (Li)??

Surface velocity @ outlet increased by 75% to no MHD

- Without B, averaged velocity close to surface velocity
- With B, averaged velocity reduced, but surface velocity increased significantly
 - Velocity at the free surface is high, due to the small Lorentz force and a less viscous friction force, while the averaged velocity is reduced due to the existence of the Lorentz force

Velocity redistribution

- Free top boundary and current perpendicular to B approaching 0, leading to overall velocity redistribution, and reducing velocity in the channel core
- In the core flow region, induced currents interact with magnetic field, causing Lorentz force as the retardant force
- Simulation results qualitatively agree with experiment

Slice: Velocity magnitude (m/s)

B=0.3T, RPM=500, V₀=0.225m/s

77

LM accumulation reduced significantly with a small inclination angle

 P_1A_1

- Angle~1.2
- LM accumulation in inclined flow is much smaller than a flat flow
 - @ inlet: 5.4mm \rightarrow 7mm, Δ h~1.6mm
 - Galinstan density ~13xLi

$$-P_{2}A_{2} - \int_{0}^{L} P_{MHD}(x)A(x) dx + \rho g \Delta H = \rho Q (u_{2} - \rho) Q (u_{2} - \rho)$$

Stimulation confirmed the flow patten and velocity scale

- COMSOL 5.6 with CFD and AC/DC modules
- Free surface: slip; other • surfaces: no-slip
- Up and down flow lacksquarepattern matches with experiment observations
- Upward velocity up to \bullet ~0.5m/s

