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Professional experience

• 2015 obtain PhD in ASIPP
• 2015-2018 staff researcher in ASIPP
– Build and develop Li coating as the most effective wall conditioning technology 

and study its impact on plasma performance on EAST
– PI for lithium powder/granule injection programs on EAST
• ELM trigger by Li granule injection
• Firstly achieve 18s ELM-free H-mode by Li powder injection
• Real-time wall conditioning for 100s H-mode using Li powder

– Support for building liquid Li limiter/circuit and conduct experiments of liquid Li limiter 
on HT-7 and EAST 

• 2018-Present post-doc in PPPL
– Lead impurity powder/granule injection programs on EAST
– Participate in impurity powder injection experiments on LHD and AUG
– Study MHD effect on LM flow in LMX
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PFCs need to withstand steady and transient heat fluxes
• Solid/W wall: erosion, dust

formation, high-Z impurity
accumulation…

• ELMs, <1ms, resulting in 10x 
or larger increases in the 
peak divertor heat flux

– RMP, pellet pacing, etc
– Limitations

• Alternative ELM control
methods are desired
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Transient heat fluxes
e.g. Giant ELM

Steady-state heat
fluxes & neutron

fluxes

• Liquid metal flow: very high
steady and transient heat
exhaust 

• Liquid metal flow in magnetic
needs more investigations

Zhitlukhin JNM 2007

P. Lang, NF, 2013

C. Kessel, FST, 2019



Outline

• ELM mitigation by Lithium granule injection

• ELM suppression by Boron powder injection

• MHD effect on liquid metal flow

• Summary 
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Impurity Powder Dropper enables injection of Li granules on 
EAST with ITER-like W divertor
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• EAST has a mix of PFC material 
– Upper Div.~ W Monoblock PFCs
– Center stack ~ Mo tiles
– Lower Div. ~C tilesà W(2021)

IPD

ITER-like Divertor

• Multi-impurity injection system based on linear piezoelectric 
powder feeder
–Li, B, Be, BN, Si, SiC, Sn…
–Particle size 5-1000? µm 
–Continuous/burst, controllable flow rate 2-250mg/s,

calibratable
• Driven by gravity, ~10m/s
• Near the upper X-point
• 700±100µm spherical granule

W

Mo

C

A. Nagy, RSI, 2018



Li granule production

ØThe size of granules decided by 
diameter of nozzle and pressure
ØGranules with different diameter of were 
selected (300𝜇𝑚,500𝜇𝑚,700𝜇𝑚,900𝜇𝑚)
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Liquid paraffin

Li tank
Temperature

control

Temperature 
measurement

CCD

Nozzle

Pressure 
feedback 
system

Z. Sun et.al. 17th IUMRS, 2016



ELM mitigation sustained 2.8s (40Xτe) without core
impurity accumulation
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• q95~3.9, Bt=1.6T, USN, W divertor,
δ=0.36，Co-NBI+LHW heating~4.5-5.1 
MW, βN~1.5, Type-I ELM, same gas
fueling

• PNBI 3.5/4.1MW

• ~194mg/s, ~2000Hz (~5.1e1022 ele./s,
plasma inventory ~2e1022 ele.)

• Dα spike size reduced obviously

• Density and sored energy same as
reference shot， reduced by ~7%

• C-VI decays gradually, no core W
ramp-up

• Radiation 0.2à0.5MW, saturated

No Li
With Li

Li injection Li injection

Z. Sun, NF, 2021



Significant ELM mitigation, ~70%
• Dα peak-valley by ~85%,△WELM/W ~6%à~1%, by 82%
• Maximum total particle flux ~70%, peak ion saturated current ~70%
• ELM frequency: regular, ~110 Hzà less regular, ~85Hz
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Transition

Large ELM suppression

Li

Pedestal top pressure decreases by 25% but core increases 10%

• Core： Ti(0)↑~15-30%, ne0↑~10-20%, Te(0)↓<5%, P↑
• Pedestal: ne↓~10%, Te↓~20%, JBS↓50%, P and P’↓
• Hypothesis: ne peaking / ion dilutionà ITG↓à improve core

confinement
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Without Li With Li



Pedestal stable in peeling-ballooning instability by ELITE analysis

• Nature ELM occupying PBM stability boundary conner, intermediate-n (n=5-15)
destabilized
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Nature ELMing phase Large ELM suppressed phase

• Li case in stable region, high-n (n=25-30) narrow-radial-width ballooning 
modes moderately close to the PBM boundary 

– Small ELMs likely triggered by local effect of clustered granules, similar as D pellet
Futatani NF 2014



Outline

• ELM mitigation by Lithium granule injection

• ELM suppression by Boron powder injection

• MHD effect on liquid metal flow

• Summary 
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Highlights

• ELM elimination enabled by real-time B power injection
– Modest energy confinement improvement
– Constant density
– Causality demonstrated
– B flow rate threshold observed for ELM elimination observed

• Edge harmonic modes associate with B injection and ELM
elimination

– Destabilized or intensified
– Provide ample particle transport to avoid impurity accumulation in ELM stable plasmas

• ELM elimination over a wide operating window of heating 
power, electron density, collisionality, main ion species, plasma
shape

12
Z. Sun, NF letter, 2021 A. Diallo, IAEA-FEC, 2021R. Maingi, JoFE, 2020 Z. Sun, PoP, 2021 R. Maingi, IAEA-FEC, 2021



Boron powder injection suppressed ELMs with constant 
density and slightly increased stored energy in EAST
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• Same plasma condition

– Ip = 0.5 MA, Bt = 2.5 T, Pheat~ 6 MW, USN, 𝛿!~0.57, 

𝛿"~0.27, 𝜖~1.65, grad-B drift ↑, toward upper X-point

– Type-I ELMs, τE ∼ 64 ms, H98(y,2) ∼ 1

• Edge B-V emission when B injected (from Te
~ 150 eV)

• Stored energy increased slightly

• Density stable and matched

• Harmonic mode destabilized
– Fundamental mode n=1



Injection time of B tracks well the ELM suppression phase
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• Same plasma condition

• Reproduceable ELM suppression
– ELM suppression begins when B 

emission reaches to a threshold

• ELM suppression phase strongly 
correlated with B injection time

• Energy confinement improves 
slightly 

BV
 [a

.u
.]

D 𝛂
[a

.u
.]

H 9
8(
y,
2)

EAST #85043 #85044 #85045 #85046

B injection onset time

ELM elimination start phase



ELMs reappear after the B injection interrupted
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• ELM suppression during the B injection

• ELMs reappear during the B_V declining 
after B injection interrupted

• Clearly no wall hysteresis à adequate for 
including in the plasma control system
– ~ 0.5 sec when boron injection is 

terminated D𝛂 [a.u.]

ELM suppression

ELMs return

L-H
Transition

BV [a.u.]

Boron onset



Flow rate range found for B injection to completely
suppress ELMs
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• Observed lower threshold
– Too little, no effect on ELM

– ~6mg/s ELM mitigation

– ~8mg/s ELM elimination

– Marginal rate: ~20% belowà small ELMs reappear

• Wide range of B injection flow rate
compatible with plasma
performance

– Upper limit ~10-20 times lower threshold flow rate for
ELM elimination

– Too much cause collapse 

~6mg/s 3.3E20 atoms/s 

~8mg/s 4.4E20 atoms/s 

BV [a.u.]

D𝛂 [a.u.]

D𝛂 [a.u.]

D𝛂 [a.u.]



Harmonic oscillation modes associated with ELM
suppression by B injection

• Week harmonic mode observed before
B injection

• ELMs become less when the harmonics
become stronger

• ELM suppression begins when the BV
emission reaches a threshold and the
harmonic mode intensity saturate

• ELMs reappear when the BV ramps down
and the mode intensity reduces

17

Auto –power spectrum XUV#58



Role of the harmonic fluctuations

18



Identification of coherent fluctuations with harmonics
in many diagnostics

19

• Harmonic mode observed on magnetic 

probes, ne, Te, XUV, Dalpha, Jsat

• Multiple harmonics strongly correlated

among different diagnostics



The mode exists in the pedestal region and SOL

20

• Fundamental modes observed 
in multi-channel Dα,
tangentially viewing midplane

• Appear inside and outside of
separatrix, peaked fluctuation 
amplitude profile

Radial profile of Dα fluc. amp.



Mode propagates poloidally away from the X-point

21

X-Point



B-induced mode related with particle transport
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• A time delay between the mode 
in the upstream plasma measured 
by the XUV and the modulation of 
the ion saturation current

• Time delay, ~180µs, close to the 
ion transit time (τ∥~200μs)



Enhanced impurity transport to prevent core impurity 
accumulation

The mode excitation time: 5-7.5s.

• Impurity confinement time calculated
during mode effect on the particle
transport 𝝉𝒊𝒎𝒑𝒎𝒐𝒅𝒆~𝟏𝟏𝟎𝒎𝒔

• Comparable with normal ELMy H-mode 
𝝉𝒊𝒎𝒑~𝟐𝟎𝟎𝒎𝒔; significantly shorter than 
𝝉𝒊𝒎𝒑~ > 𝟔𝟓𝟎𝒎𝒔 in the classic ELM-free H 
mode

23



Edge harmonic mode not observed for Li powder

24

• No mode observed
• ELM suppression

Li case: 

• Mode appears and 
remains active 

• Core W reduces
significantly

Boron case: 

Same plasma parameters

1st

2nd

3rd

4th



Robust ELM suppression over a wide range of conditions

Noted: succeeded in suppressing ELMs in every attempted condition

25



Not sensitive to heating scheme and power
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• Wide range of input powder with different
schemes
– RF only heating: 2.8 MW – 5.8 MW
– RF + 1-2 co-NB: 4.1 MW – 7.5MW
– RF + 2 co-NB + 1 ctr-NB: 7.1 MW
– Appears to be insensitive to the toroidal rotation

• 𝝊𝒆,𝒑𝒆𝒅∗ ~0.7-6

Auto–power AXUV #54

BV[au]



Ip =350-570kA, 4.8<q95<7.2, applicable for a high magnetic field tokamak

ELM suppression obtained with different Ip & q95

27

Stored Energy [kJ]

Dα[au]

Ip[kA]
q95

BV[au]
Auto–power AXUV #54

Auto–power AXUV #57

BV[au]

q95Ip[kA]

Dα[au]

Stored Energy [kJ]

EAST #88016



In He-plasmas: ELM suppression was also achieved

Auto–power AXUV #55BV[au]

Dα[au]

He-I[au]

Stored Energy [kJ]

ne[1019m-3]

28

• He-plasmas with 30-40% D



ELM suppression with LSN and lower W divertor

29

B injection

0.5MA, LSN, fav. Bt, Pheat~6MW, ne~3.2x1019 m-3

W divertor



Outline

• ELM mitigation by Lithium granule injection

• ELM suppression by Boron powder injection

• MHD effect on liquid metal flow

• Summary 
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Free surface flow an optional choice for LM walls

• Analytical and simulation
study for free surface flow
conducted

• Experimental study of
MHD effect is scarce

• Simulation or theory
validation needs
experiment results

31
A.Y. Ying,  FED 2004

Heat flux

S. Smolentsev FED 2021



LMX overview

• Rotary gear pump to circulate Galinstan
– 0-19GPM

• Channel liner: plastic/copper/SS
• Magnetic field: 0-0.33T
• Inclined angle: 0-7
• Laser sheet + cameraà LM height
– Averaged velocity=Q/(height*width)

• Surface velocity: particle tracking

32
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LM piled up in the channel inlet due to MHD drag
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• MHD brakes LM
flow

• LM thickness
increases
gradually from the
outlet to inlet

electromagnet

In
le

t

O
ut

le
t

Flow direction



Analytical model matches with experiment
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• Experiments show LM
height@inlet increases with
~B2

• Analytical model fits well with
a proper K

𝑃!𝐴! − 𝑃"𝐴" −,
#

$
𝑃%&' 𝑥 𝐴 𝑥 𝑑𝑥 = 𝜌 𝑄 𝑢" − 𝑢!

!"!"#
!#

≈ 𝐾𝜎$%u𝐵&
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− 𝐾𝜎&'Q𝐵%𝐿 =

𝜌 𝑔 ℎ%% 𝑤
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First stimulation by OpenFOAM matches with experiment

35Courtesy of J. Salami



Insulating wall or coating could be a solution to reduce 
the MHD drag 
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• Plastic wall : increase by
~3%

• Copper wall: increase by
~30%

• Ha~650, Re~2520, no nozzle, flat Z. Sun, NF, in preparation 



Divertorlets concept

• Use many flow paths à
reduce exposure time 
• 𝑁 = !!"#

"
, 𝑢 = !!"#

#$%
=

!!"#/%
#$%

, 𝑁 ↑ 𝑢 ↓

• Reduce necessary speed
for avoiding evaporation

• Reduce MHD drag

Divertorlets

A. Fisher, Z. Sun, E. Kolemen, NME 2020

heat flux



Conductive bars placed in every-other channel to 
produce effective pump

• JxB force in combination with toroidal magnetic field 
and external current

• High-conductive conductors take up the current 
and reduce jxB force

• JxB difference between adjacent channels à up
and down liquid flow

• Prototype built
– Copper-G10-copper sandwich 
– Copper bars for conductors
– G10 sheet(air gap) increases current fraction 

through the conductor

38

Top view

current

Toroidal
B 10

cm

Front view



Flow velocity measured by pitot tube 

• Galinstan

• Straight and L-shaped 
tubes placed in the 
channel with upward 
flow velocity 

– Galinstan column 
difference 

– L-shaped : static
– Straight : static 

+dynamic

39



Flow speed increases with increasing external current 

• Pump force is proportional 
to the current density 
difference between 
consecutive channels and
magnetic field

• Experiment confirmed
upward velocity up to 
0.4m/s

• Flow speed increases with 
increasing magnetic field 

40



Stimulation results match with experimental results

• COMSOL
• Velocity increases from 

0.05 to 0.4 m/s with current 
increasing from 100 to 
900A

• Peak flow speed at 0.2 T
– Galinstan oxides on the 

walls reduce the MHD
effect

41Z. Sun, SOFE 2021



Summary

42

• For ELM elimination, a simple technology of solid particle injection by gravity was
successfully demonstrated in EAST

• High flow rate Li granule injection suppressed larger ELM associated with depressed
pedestal pressure and enhanced core pressure

• Robust ELM suppression by B powder was demonstrated over a wide range of 
plasma parameters, associated with low frequency harmonic modes 

• LM accumulation in the free-surface flow caused MHD drag was observed
• Experiments demonstrated successful operation of the toroidal divertorlets concept, 

and simulations agree with experimental measurements of vertical velocity
• Open questions :

Ø What is boron induced mode?
Ø Role of ion dilution effect on pedestal and core plasma?
Ø Surface oscillations, MHD drag, and heat transfer for ‘Divertorlets’?
Ø …



Thank you for your attention

43



Large ELMs disappear and small ELMs triggered
• Phase I: regular at ∼110 Hz ± 10 Hz 
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• ELM mitigation phase III:
– Averaged ~80Hz<<2000Hz, not all

granules triggering ELMs
– Variable frequency, spreading in 30-220Hz
– Clustering likelihood with 3 or 4 granules

~3%-10% àexpected ELM freq.~60-
200Hz

• Transition phase II:
– Mixed small and large-amplitude ELMs
– Evidence for the granules triggering ELMs 



ELM triggered by granule in ELM-free H-mode
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Induced

Nature



AUG N2 injection
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Edge cooling is likely responsible for the depressed pedestal Te

• Radiation dominated in the upper divertor region
• Channel with maximum value localizes the upper X-point, ↑~3.2x
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Pedestal ne reduction possibly stems from D recycling control with 
sufficient Li on the wall 

• Pedestal ne starts to decline as the D recycling control becomes more effective 

48

Li injection

ne decline



Enhanced background turbulence and transport 

• Pedestal density fluctuations 
↑~50-100%
• O-mode reflectometer 
• Around the pedestal top
• No obvious increase in pedestal foot

and steep region

• Particle flux between ELMs in ELM
mitigation phase elevated ~2X ,
suggesting particles outward
transport

49



Gravity assisted Li granule injection into plasma
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• Two timings and two flow rates
in four shots

– High rate: 194mg/s ± 10,
~2000Hz

– Low rate: 32mg/s ± 2, ~680Hz

• True color video shows Li
granules go into upper divertor
plasma, wider green region with
higher flowrate

Flowmeter (V)

Li-II (a.u.)

dominated by green line emission at 548 nm



Reproducible ELM mitigation with modest stored energy reduction

51

• No Li, No mitigation

• High flowrate (194mg/s) and low
power(3.5MW), H→L transition

• Too little Li(32mg/s)，the effect
discounted

• No H→L transition with high 
power(4.1MW)

• Earlier contacting plasma, earlier ELM
mitigation, reproducible

• ELM mitigation accompanied with small
WDia reduction, <10%

High flowrate

High flowrate

Low flowrate

High flowrate



Boron on Te ne Ti
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Stored 
energy
!kJ"

Electr
ons

Io
n

Ther
mal

Fast 
ion

Tot
al

Exp. from 
EFIT

#85041 102 68 170 19 189 193

#85052 134 68 202 23 225 217

Change 32 0 32 9 36 24



ELM suppressed over a wide range of ne and 𝜐!∗

• nGW ≈ 0.28-0.87

• stored energy ≈ 120-254 kJ

• 𝝊𝒆,𝒑𝒆𝒅∗ ∝ 𝒏𝒆/𝑻𝒆𝟐 ~0.7-6

53



ELM suppression and the mode obtained with 
unfavorable Bt

• Total power~7.2MW

– NBI~3.9, RF~3.3

• USN, Reversed BT ~2.6T, B ×▽B↓

• Density and stored energy drops 

slightly ~5%

– Perhaps due to the opposite drift

direction

Stored Energy [kJ]

Dα[au]
ne[1019m-3]

BT[T]

Auto–power AXUV #61
BV[au]
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The mode not uniform along the poloidal cross section 
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Mode produces net transport and drives particles out from 
the core into the wall

• The mode onset, shown as the red 
line 

– Dα baseline and WI emission ↑
– ⁄"𝐷! 𝐷! : <1% à ~6%
– Core W density & radiation↓

• The mode disappears, shown by 
the blue line

– Dα baseline and WI↓
– core W and radiation power ↑

56



The mode can be observed with different impurity species 

• Boron is easiest to excite the EHM

• Harmonic number is different

57

Boron
#85198

Helium plasma
#94238 with CHe>20%

Argon
#85255

Neon
#85287

CD4



Mode appears on all poloidal section by Minrov probes

58Fundamental

Fundamental

58

Fundamental

Fundamental

Fundamental



n=1 mode indicated by Mirnov coil measurements

∆𝝓=𝝅

Different with the n=0 thermal current convective instability, 
i.e., the so-called fluctuating state mode, observed in 

AUG/JET/COMPASS/DIII-D and EAST
n=0 mode: 
Loarte PRL 1999; Potzel JNM 2013; Potzel NF 2014; 
Komm NF 2019; Krasheninnikov POP 2016

IPD

59

n=1

2nd ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 ∆𝝓~0



Boron species distribution by SLOPS



ELM suppression demonstrated in RF only discharges, paving 
the way for future long pulse demonstration

Boron injection phase
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B-V[a.u.]

Core Radiation [a.u.]

Internal inductance

Vloop[V]

D𝛂 [a.u.]

Wmhd[kJ]

ne/nGW[a.u.]

• ECH+LHW+ICRF

• No effect on core
radiation

• Slight effect on li
and loop voltage
increase

• Constant WMHD and
ne

• Vloop~0.0V

Vloop[V]



Li ELM suppression related to pedestal density moving
inward; ECM not enough strong to drive particles out

62

• Stronger ability Li pumping with metal wallà
pedestal density reduce àELM
mitigation/suppressionà core density
gradually ramp up, similar as NSTX

• No observation of enhanced ECM amplitude

Separatrix

Li-III[a.u.]

Dα[a.u.]

Line-averaged density[1019m-3]
Spectrogram edge-ECE

Li onset



Reversed Bt

•

63/21



The harmonic mode observed in Te and ne fluctuation

64

Auto–power POINT #1 edge chord

Auto–power POINT #6 Core chord

Fundamental

2nd 

• XUV signal is proportional to ne2 x nz x f(Te)
• Observed the fundamental mode 0.89< ρ <0.95 by multi-

channel correlation ECE

• Stronger intensity in edge density fluctuation measured by
interferometer across pedestal than center



B-induced mode affects the particle transport

65

• Observed in the divertor using Dα and 
Langmuir probes

• Suggests particle transport relating with
the mode

Auto–power Dα #3 Upper Div.

Auto-power J_sat #07 upper inner

Boron-induced 
ELM suppressed phase

EAST #93153 time=6s USN, B ×▽B ↑



EAST diagnostics

66



Observed frequencies in the pedestal from neoclassical (XGCa) modeling 
consistent with Geodesic Acoustic Mode

67A. Diallo et al., IAEA FEC 2021 EX/4-6

• X-point drop 
location important

• While the n=1 mode 
can be excited, 
coupling to an n=0 is 
not yet clear

• Future work: 
extension of 
simulation coupling 
boron ablation and 
turbulence in XGC



Origin of this mode?

• Ablated Boron in X-point produces density perturbation akin of a 
density accumulation
A density perturbation in the X-point results in perturbation that 

is     effectively sensed poloidally (due the long connection length)

• This density perturbation leads to poloidal asymmetries of 
charges 

➾ Resulting in a perpendicular velocity (e.g., in the radial 
direction)

• Asymmetries cause a radial current which transport charges 
across the magnetic surfaces 

➾ This current tends to reverse the perturbed E-field
• ➥Leading to a feedback and establishing a GAM-like mode

6
8

density 
accumulation

density 
depletion



Global parameters range for impurity dropper induced ELM 
suppression

6
9

• Operation window for 
B and Li is wide

• Boron ELM suppression 
achieved in high 
heating power and
higher density



The mode appears to help maintain a state with flat 
pedestal pressure gradient and low impurity concentration
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(a)

(b)

(c)(d)

(e) (f)

Black (ELMy) Ò Blue (ELM free)
Ø CD4 seeding Ò detachment Ò edge recycling ↓ Ò particle 

fueling ↓ Ò pedestal electron density profile flatten;
Ø Impurity radiation cooling Ò electron temperature ↓;
Ø Pedestal pressure gradient and current density decrease 

by ~50% Ò ELM suppression;
Ø However, the high-Z impurity concentration continuously 

increases.

Blue (w/o the mode) Ò Red (with the mode)
Ø CD4 seeding ↑ Ò pedestal top and foot density ↑, a low 

pedestal density and pressure gradient is maintained Ò
the state of ELM suppression and low impurity 
concentration is maintained.



A simplified theory for MHD drag in LMX
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K. Miyazaki (1983). MHD Pressure Drop of Liquid Metal Flow in Circular and Rectangular 
Duct under Transverse Magnetic Field.

Assumptions: 

• Steady-state, fully developed, inviscid flow

• Simple derivation based on electrical approach

• Uniform current density, expected to be valid for higher magnetic field, highly conducting 

walls, low conductive wall leads to a not uniform j



COMSOL simulation setup 

• Uniform height along channel length: 15mm.
• Uniform velocity profile at inlet.
• Slip boundary condition at the “free surface”, 
• No-slip for side walls and bottom wall.
• Symmetry applied at the center of the channel.
• Copper liner, thickness: 0.08 in ~ 2 mm.
• Scan for:

• B = 0.1 T, 0.2 T, 0.3 T.
• Flow rate: 7.89 L/min, 12.31 L/min, 16.64 L/min, 20.97 L/min.

• Dimensions of LMX channel.
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Detectable MHD effect in LMX with conductive and insulated wall
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• Reduced by ~3%
• Reduced by ~26%

• Ha~650, Re~2520, no nozzle, flat

B field on

B field on



Profile of measured surface velocities

• Bubble and introduced particles
tracking

• Surface velocity was increased
along streamwise direction

• Across Y direction (channel
width), velocity are close
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Surface velocity increased as B field

• Surface velocity increases with B
– Higher magnetic field generates stronger 

MHD drag
• Thickness of high-surface-velocity

layer???
• How the high-velocity-region affect heat

flux transport?
• Is high-velocity-region beneficial for

surface refresh, e.g. improving recycling
control (Li)??
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Surface velocity @ outlet increased by 75% to no MHD

• Without B, averaged velocity close to
surface velocity

• With B, averaged velocity reduced, but
surface velocity increased significantly
– Velocity at the free surface is high, due to the 

small Lorentz force and a less viscous friction 
force, while the averaged velocity is reduced due 
to the existence of the Lorentz force
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Velocity redistribution

77

Ø Free top boundary and current 
perpendicular to B approaching 0,
leading to overall velocity redistribution, 
and reducing velocity in the channel 
core

Ø In the core flow region, induced currents 
interact with magnetic field, causing
Lorentz force as the retardant force 

Ø Simulation results qualitatively agree with
experiment

B=0.3T, RPM=500, V0=0.225m/s



LM accumulation reduced significantly with a small inclination angle

• Angle~1.2

• LM accumulation in inclined flow is much
smaller than a flat flow
– @ inlet: 5.4mmà7mm,△h~1.6mm

– Galinstan density ~13xLi
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Stimulation confirmed the flow patten and velocity scale

• COMSOL 5.6 with CFD 
and AC/DC modules 

• Free surface: slip; other 
surfaces: no-slip 

• Up and down flow 
pattern matches with 
experiment 
observations

• Upward velocity up to 
~0.5m/s

79


