

Progress on Disruption Event Characterization and Forecasting (DECAF) Including Real-Time Implementation

S.A. Sabbagh¹, J.W. Berkery¹, Y.S. Park¹, J.W. Lee², K. Erickson³, M. Podestà³, M.D. Boyer³, F.M. Levinton⁴, Y. Jiang¹, V. Klevarova,¹, J.D. Riquezes¹, J. Butt¹, J.M. Bialek¹, J.G. Bak², M.J. Choi², H.K. Park⁵, S. Gibson⁷, C. Ham⁷, J. Kim², W.C. Kim², J. Ko², L. Kogan⁷, W.H. Ko², J.H. Lee³, K.D.Lee², G. Pautasso⁶, M. Maraschek⁶, D. Ryan⁷, A. Thornton⁷, S.W. Yoon², J. Yoo³

¹Department of Applied Physics, Columbia University, New York, NY ²Korea Institute of Fusion Energy, Daejeon, Republic of Korea ³Princeton Plasma Physics Laboratory, Princeton, NJ ⁴Nova Photonics, Princeton, NJ ⁵UNIST, Ulsan, Republic of Korea

⁶Max Planck Institute for Plasma Physics, IPP, Garching, Germany

Dulham Centre for Fusion Energy, UKAEA, Culham, UK

DPPPL NORVAA

KFE KOREA INSTITUTE OF FUSION ENERGY

COLUMBIA UNIVERSITY

Presented at the

NSTX-U Physics Meeting

(Virtual) 24-Jan-2022

Supported by US DOE grant DE-SC0016614

Outline

- Disruption Event Characterization and Forecasting (DECAF) quick review
- MAST-U stability projections, initial stability space investigation
- DECAF ELM detection with global MHD discrimination
- Initial DECAF locked mode proximity determination in ASDEX-U
- DECAF locked mode forecasting model and application to KSTAR
- □ Stability sensitivity study on KSTAR examining potential use in MRE
- Counterfactual machine learning analysis examination for DECAF
- DECAF computational and database capability expansion
- Real-time DECAF implementation on KSTAR

Continued DECAF development builds from an extrapolable approach with strong initial success – expanding to real-time in KSTAR

- Fully automated, physics-based analysis of existing tokamak databases from multiple devices (e.g. KSTAR, NSTX, MAST/-U, AUG)
- Analyzing all plasma states, continuous and asynchronous events
 - "<u>Critical</u>": (Level 3) event chains leading to disruption if no action taken
 - "Proximity": (Level 2) paths to "critical" events
 - "<u>Safe</u>": (Level 1) events indicate steady operation (e.g. L-mode / H-mode determination, steady ELMing, benign confinement transitions)
- "Forecaster events": give earliest warnings
- High quantitative success found to date
 - > 91% true positive, ~ 8% false positive (~1e4 shots, ~1e6 samples)
- Research <u>continues</u> focused on improving forecasting to needed accuracy (98%+ goal for ITER, w/low false positives)

Data / analysis is desired in real time to reproduce offline analysis

(J. Berkery BP11.00016 → MAST/-U)

(V. Klevarova JP11.00059 → AUG)

<u>Review</u>: DECAF provides an early disruption forecast - on <u>transport timescales</u> – giving potential for disruption avoidance

KSTAR

- DECAF event chain reveals physics
 - Rotating MHD slows, bifurcates, locks
 - Plasma has an H-L back-transition (pressure peaking warning PRP) before DIS
 - Early warning occurs in apparently SAFE region of operating space!
 - NOTE: 15 conditions used including <u>plasma</u> <u>velocity profile</u>

S.A. Sabbagh, et al., 2020 IAEA Fusion Energy Conference, Paper IAEA-CN-286/1025

DECAF analysis of MAST showed disruptions with Greenwald limit violation common in ramp down; MAST-U flattops mostly below limit

KSTAR

MAST-U operational space

 $\hfill\square$ Decreasing I_p in ramp down reduces the limit

□ MAST-U flattops usually well below limit

J. Berkery, et al., APS DPP BP11.00016

Ideal stability of four MAST-U projected equilibria shapes were evaluated for stability by scaling pressure, etc.

DECAF examination of MAST-U operation has reached max β_N of 3.18 and β_N/I_i of ~3.3, still below computed global stability limits

Normalized beta diagrams show macroscopic stability limits

- □ The colored lines are contours containing at least 10 equilibria for:
- Ohmic (red), SW off axis beam (orange), SS on axis beam (green), and two beam (blue)

□ Projected MAST-U no-wall limit: $\beta_N \sim 4$ and $\beta_N/I_i \sim 7$

 T_e profile provides critical addition to D_{α} ELM detection by determining the radial extent of perturbation – needed to distinguish disruptive MHD

- In this case, a global kink / RWM

J. Butt, et al. (APS DPP 2021 TP11.00109)

KSTAR

8

Locked mode dependence on plasma parameters being studied for "proximity" disruption prevention approach

(V. Klevarova JP11.00059 → AUG)

- In large devices, static ('locked') modes (LM) are frequently detected close to the end of chain of events that lead to disruption [1, P.C. de Vries et al., Nucl. Fusion 51 (2011) 053018]
- Semi-empirical scaling relations for mode locking based on mode amplitude have been derived and (routinely) applied

-> Some normalize LM amplitude to plasma current, e.g. in JET

'Mode lock/lp: 400–520 pT/A' [2, C. Reux et al. *Fusion Engin. and Design* 88 (2013) 1101-1104, Table 1]

Multi-device study of disruptive LM amplitude B_{LM,disr} shown in [3, P.C. de Vries et al., Nucl. Fusion 56 (2016) 026007] resulted in a scaling containing more physics ingredients:

 $\hat{B}_{LM, disr}(r_c) \propto I_p \cdot a^{-1.1} \cdot (li/q_{95})^{1.2} \cdot \rho_c^{-2.8}$ (1)

KSTAR

 $\rho_c = r_c/a$, $r_c = |R_{mag} - R_{coils}|$ $a \dots$ plasma size, $\rho_c \dots$ mode structure $q_{95} \dots$ mode-plasma edge distance $li/q_{95} \dots$ proxy for energy driving mode growth

Scaling (1) was further validated on large database (JET, ASDEX-U, DIII-D, COMPASS) in [4, V. Klevarova et al., *Fusion Engin. and Design* 160 (2020) 111945]
 For example in ASDEX-U B_{LM,disr} ~ (0.95 ± 0.42) B_{LM,disr} at the disruption time

Proximity of experimental and scaled disruptive mode amplitudes a measure of disruption onset (ASDEX-U)

(V. Klevarova APS DPP JP11.00059)

- When compared to experimental data, scaling (1) can estimate how 'close' the mode, in terms of amplitude, is to disrupt the plasma
 - Here, (1) added to DECAF, warning is generated once experimental mode amplitude $B_{LM,exp}$ reaches a certain level of $\hat{B}_{LM,disr}$ -> this will become one of DECAF events, the DLM event ('disruptive locked mode')

warning generation <u>Upper figure</u>: Comparison of scaled $\hat{B}_{LM,disr}$ and experimental $B_{LM,exp}$ mode amplitudes for an ASDEX-U discharge <u>Right figure</u>: Generation of DLM warning in DECAF once $B_{LM,exp}$ reaches certain level (70%) of $\hat{B}_{LM,disr}$ (DIS: disruption time)

Level 3 = event will disrupt plasma, take action! Level 2 = disruptive level is approached, pay attention!

Initial confusion matrix evaluation of DLM capability for ASDEX-U shows promise for use as a proximity

MAD: Median absolute deviation

Island rotation dynamics model used to compute the critical frequency to forecast disruption

Cylindrical, rigid body model

KSTAR

Possible model of drag for both a "slip" and a "no slip" condition:

$$\frac{d(I\Omega)}{dt} = T_{aux} - T_{mode} - \frac{(I\Omega)}{\tau_{2D}}$$

>LTM-f

Utilize DECAF realtime MHD system to determine mode, critical frequency

J. Riquezes, et al. APS DPP PO09.00007

LTM forecaster on KSTAR leaves ample time for potential NTM control before disruption

JM-fsignals

- Plots show summary of **DECAF** results for characterization and forecaster in a disrupting **KSTAR** shot
- Bifurcation frequency is crossed at ~4.5 s
 - Locking occurs at ~ 5.8 s
 - Disruption happens at ~ 6.1 s
- Significant time period of 1.6 s between forecasting and disruption

J. Riquezes, et al. APS DPP PO09.00007

KSTAR

LTM Forecaster

LTM Characterization

condition

0.6 (W)

0.4

0.2

DECAF MHD mode lock event forecaster provides early warning; MHD shows tearing and kink-like characteristics in ECEI

NSTX-U Physics Meeting: Progress on Disruption Event Characterization and Forecasting (DECAF) Including Real-Time Implementation: S.A. Sabbagh, et al., (Columbia U.) (1/24/22)

Sensitivity of resistive, ideal DCON stability on KSTAR examined for high non-inductive plasmas – potential use of Δ' as stability indicator

Ideal stability of profiles: q shear reversal

Less freedom in equilibrium basis functions produces less computed stability variation

Y. Jiang, et al., Nucl. Fusion 61 (2021) 116033

Weak splined tension basis function model manifests greater localized reversed shear and off-axis current profile

KSTAR

Y. Jiang, et al., Nucl. Fusion 61 (2021) 116033

Innovative counterfactual machine learning introduced for the first time to generate hypothetical activity contradicting observations

- RWMs typical do not grow in NSTX if strong rotating MHD is present
- Consideration of 10 different MHD activity evolutions that would have kept the RWM stable on NSTX
- Counterfactual generation constrained within bounds based on NSTX rotating MHD operational experience
- Examining for use in DECAF for disruption proximity avoidance

DECAF development attention 2020 – 2021 to real-time system design and implementation on KSTAR, DECAF code analysis processing

Real-time DECAF on KSTAR

- several key diagnostics now acquired in real-time as part of the KSTAR PCS
- initial implementation real-time DECAF software as part of KSTAR PCS

DECAF analysis capability (several development goals recently achieved)

- Parallel processing over high performance clusters
 - PPPL private (~30 CPUs) and open SLURM queues (~1,000 CPUs)
 - Next step to utilize Princeton Stellar cluster
- Analysis persistence
 - Automated interaction with the DECAF database
 - 200 TB dedicated storage, funded for further expansion
- Analysis chunking

KSTAR

 Standard DECAF analyses are now "one-button" capable to process an *entire run year of data*, or the <u>entire database of a device(</u>!) for iterated analysis of DECAF forecasting models, etc.

NSTX DECAF run: 30 CPU SLURM

See NEXT

slides!

18

- 20 shots, 16 DECAF events
- 30 seconds computation time

NSTX run year ~ 3,000 shots

- extrapolation: 1.2 hours computation

NSTX database ~ 25,000 shots (40 TB) - extrapolation: 10.4 hours computation

New real-time diagnostic acquisition in the KSTAR PCS enabling an integrated, world-class r/t DECAF analysis

Initial real-time toroidal velocity, ion temperature diagnostic (rtV_b) shows very good agreement with KSTAR CES system

KSTAR

Y.S. Park (CU), W.H. Ko (KFE)

The first real-time ECEI data on KSTAR was taken as well in 2021 run campaign

KSTAR

□ Full 2D poloidal cross-section acquired in r/t - 192 channels!

□ 3 of 192 channels shown

NSTX-U Physics Meeting: Progress on Disruption Event Characterization and Forecasting (DECAF) Including Real-Time Implementation: S.A. Sabbagh, et al., (Columbia U.) (1/24/22)

The first real-time DECAF module in KSTAR PCS recently measured T_e profile (in 2021 run campaign)

Real-time MHD system on KSTAR computed real-time FFTs for first time in 2021 for real-time DECAF application

- Real-time MHD analysis computer installed on KSTAR
 - Connection to plasma control system (PCS)
 - Real-time FFT analysis taken in
 2021 comparison to offline next

Offline DECAF analysis of real-time signals

DECAF spectrogram

NSTX-U real-time MHD system implementation is part of our present grant research

KSTAR rtMHD system

KSTAR real-time MHD computer, DAQ

KSTAR buffer chassis (diagnostic interface box)

Started discussions on NSTX-U system design

- Diagnostic discussion with Eric F. and Stefano M.
- Initial implementation / PCS interfacing discussion with Greg. T. and Frank H.
- Discussion with Dan B. of incommon interfacing

LEMO cables from high-n array mag probes

NSTX-U High-n system

24

r/t DECAF initial deployment: four real-time software elements were 1-4 installed and tested in 2021 experiment

New disruption avoidance actuator: applied entrainment field successful in preventing naturally-occurring 2/1 NTM locking (2021 experiment)

NOTE: applied AC field frequency is << mode rotation (analysis continues)</p>

DECAF disruption prediction and avoidance research continues and has expanded to real-time implementation in KSTAR

- Multi-device, integrated approach to disruption prediction and avoidance that meets disruption predictor requirement metrics
 - Physics-based "event chain" yields key <u>understanding</u> of evolution toward disruptions needed for confident extrapolation of forecasting, control
 - □ Full multi-machine databases. Performance ~10⁴ shots : 91.2% true positive rate → keep improving!
 - Supporting physics analysis, experiments run to create, validate models, expand operating space
- DECAF producing early warning disruption forecasts
 - □ On transport timescales: → guide disruption avoidance by profile control
 - □ Research continues / expands disruption forecasting performance analysis (→ ITER ~ 98%+ level)

DECAF expansion to real-time implementation (KSTAR)

- **Real-time acquisition of magnetics (MHD) r/t FFT analysis**, V_{ϕ} , T_i , T_e , δT_e , (B pitch angle, δB coming)
- Implemented, tested initial DECAF disruption events, forecasting models in real-time (e.g. <u>LTM-f</u>)

New disruption avoidance actuator demonstrated on KSTAR using 3D applied field

We are hiring post-doctoral researchers! -> Email: sabbagh@pppl.gov

DECAF related presentations at the APS DPP 2021 Meeting

- Mon AM: J.W. Berkery et al. (BP11.00016): Equilibrium Reconstructions, Stability Calculations, and Disruption Event Characterization of Plasmas in the MAST and MAST Upgrade Spherical Tokamaks
- Tue PM: V. Klevarova et al. (JP11.00059): Implementation of MHD-mode Induced Disruption Forecaster into the DECAF Code
- Wed 3 PM: S. A. Sabbagh et al. (PO09.00006): Tokamak Disruption Event Characterization and Forecasting Research and Expansion to Real-Time Application in KSTAR
- Wed 3:12 PM: J. D. Riquezes et al. (PO09.00007): Torque balance analysis of rotating MHD for disruption prediction and avoidance in KSTAR
- Wed PM: A. Piccione, et al. (PP11.00142): "Resistive Wall Mode Stability Forecasting in NSTX through Balanced Random Forests and Counterfactual Explanations
- Thu AM: J. Butt et al. (TP11.00109): Edge-Localized Mode Detection and Correlation with Rotating MHD modes for Disruption Event Characterization and Forecasting
- Thu AM: Y. Jiang et al. (TP11.00111): Kinetic Equilibrium Reconstruction of KSTAR and the Impact on Stability Analysis of High Performance Plasmas

28