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 Issues in optimizing 3D fields
 Tailoring 3D field

• Method
• ELM suppression for the entire period of discharge with n=1 field
• Additional benefits of the ERMP scheme

- ELM suppression with reduced confinement degradation
- Control of RMP induced fast ion orbit loss to reduce wall heating

 Other approaches to improve 3D field-induced degradation
- Preventing core RMP penetration
- NTV control (electron NTV and torque matrix)
- Understanding 3D field-induced L-H transition delay

 Future work 
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Introducing 3D field effect: ELM suppression and other effects

• 3D field can suppress edge localized modes (ELMs), which can cause intolerable damage to plasma-
facing components in a future reactor. 

• 3D field application for ELM suppression can lead to other effects.
- Mode locking that eventually terminates plasmas.
- Density pump, angular momentum degradation, and fast ion orbit loss. 
- Delay or prevention of L-H transition (if applied before L-H transition)
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Need to isolate edge RMP to optimize ELM control

• Resonant Magnetic Perturbation (RMP, 𝛿𝛿𝐵𝐵res) is known to be important for ELM suppression.
- The edge RMP penetration can suppress ELM [1,2] 𝛿𝛿𝐵𝐵res ≫ 𝐵𝐵pen,𝑡𝑡ℎ(ne,𝜔𝜔𝜙𝜙, … ).
- However, core RMP can drive disruptive Locked Modes (LMs).
 Edge RMP needs to be maximized but core RMP should be minimized to optimize ELM control

• However, external 3D coils typically apply both edge and core RMP.
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[Park et al., Nature Physics (2018)]

[RMP profile used for ELM control]

𝝍𝝍𝑵𝑵

𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐜𝐜𝐞𝐞𝐞𝐞𝐜𝐜

Resonant field [𝟏𝟏𝟎𝟎−𝟒𝟒 𝑻𝑻]

[3D coils for RMP ELM control]

[1] R. Nazikian et al., PRL, (2015)]
[2] Q. M. Hu et al., PRL, (2020)]
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New scheme developed : Systematic RMP localization

• A systematic approach can minimize core response and maximize edge response by introducing core-
null space projection, 𝑃𝑃𝑐𝑐,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 [S.M. Yang et al., NF, 2020].

• This edge localized RMP eliminates core resonant response (core 𝛿𝛿𝐵𝐵=0) while it maintains sizable 
edge response with good efficiency (only ~30 % penalty in edge 𝛿𝛿𝐵𝐵). 
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[Systematic RMP localization]
[S.M. Yang et al., NF, 2020]

eliminate 𝛿𝛿𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒

𝛿𝛿𝐵𝐵
𝑐𝑐𝑒𝑒
𝑟𝑟

𝜓𝜓𝑁𝑁

𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑷𝑷𝒄𝒄,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 ⋅ 𝑉𝑉𝑏𝑏𝑥𝑥

Removal of core coupling 

𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑉𝑉𝑏𝑏𝑥𝑥

[edge dominant optimization]

[Edge localized optimization]

Finite
𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(Considers both edge and core)

(Considers edge RMP only)

Note: this finds the most 
efficient 𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 drive!

[Example of edge-localized RMP]
- zero core 𝛿𝛿𝐵𝐵 vs finite edge 𝛿𝛿𝐵𝐵
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Edge localized RMP (5kA applied)

ELM suppressed

Difficulties in validating edge localized RMP

• However, the geometry and location of RMP coils limit the realization of the most efficient edge 
localized RMP for safe ELM control.

• For example, it is impossible to follow the variation of edge localized RMP at HFS using existing coils.
• The edge localized RMP is predicted to be inefficient for ELM suppression, despite of flexible KSTAR 

3D coils.
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[Existing coils cannot produce HFS structure]

HFS structure 

[Edge localized RMP with the existing coil is inefficient]

 Impossible to test ERMP with existing system
(power supply is not enough)

𝛿𝛿𝐵𝐵
𝑐𝑐𝑒𝑒
𝑟𝑟

𝜓𝜓𝑁𝑁

80 times more current 
for ELM control



Penalizing core RMP for experimental application

• We introduced penalizing factor, copt, that can strike a balance between coupling efficiency and safety 
of RMP for ELM suppression.
- 𝐜𝐜𝐜𝐜𝐨𝐨𝐨𝐨 =0 is edge efficient RMP that neglects core RMP response. 
- 𝐜𝐜𝐜𝐜𝐨𝐨𝐨𝐨 =1 is edge localized RMP without penalization (𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is not sufficient for ELM suppression)
- Increase of copt localizes RMP, by removing core RMP, 𝛿𝛿𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒/𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 .
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𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑷𝑷𝒄𝒄,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 ⋅ 𝑉𝑉𝑏𝑏𝑥𝑥𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑉𝑉𝑏𝑏𝑥𝑥
[edge efficient optimization] [edge localized optimization]

Removal of core coupling 

𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ (�⃡�𝐼 − copt𝑈𝑈𝑐𝑐) ⋅ 𝑉𝑉𝑏𝑏𝑥𝑥

weight removal of core coupling

[Combined for practical application]

 𝐜𝐜𝐜𝐜𝐨𝐨𝐨𝐨 removes core RMP

At copt = 1
 core RMP=0 (edge localized RMP) 

𝛿𝛿𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒/𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Weighted core removal (𝐜𝐜𝐜𝐜𝐨𝐨𝐨𝐨)

[Weight core removal (𝐜𝐜𝐜𝐜𝐨𝐨𝐨𝐨) VS core RMP]

𝐜𝐜𝐜𝐜𝐨𝐨𝐨𝐨 gradually reduces core RMP

★ core RMP=0

[S.M. Yang, J.-K. Park et al., PRL submitted]



5 kA limit

Weighted core removal (𝐜𝐜𝐨𝐨𝐜𝐜𝐩𝐩)

𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑡𝑡ℎ

[Weight core removal (𝐜𝐜𝐜𝐜𝐨𝐨𝐨𝐨) VS edge RMP]

ELM supp. threshold

Penalizing core RMP for experimental validation

• We introduced penalizing factor, copt, that can strike a balance between coupling efficiency and safety 
of RMP for ELM suppression.
- 𝐜𝐜𝐜𝐜𝐨𝐨𝐨𝐨 =0 is edge efficient RMP that neglects core RMP response. 
- 𝐜𝐜𝐜𝐜𝐨𝐨𝐨𝐨 =1 is edge localized RMP without penalization (𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is not sufficient for ELM suppression)
- Increase of copt leads unnecessary reduction of edge RMP, 𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , due to overlap between core and edge.
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~70% overlapping

[Why 𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 reduces?]

- Due to extensive overlap between core and edge𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑷𝑷𝒄𝒄,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 ⋅ 𝑉𝑉𝑏𝑏𝑥𝑥𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ⋅ 𝑉𝑉𝑏𝑏𝑥𝑥
[edge efficient optimization] [edge localized optimization]

Removal of core coupling 
At copt = 0

𝐜𝐜𝐜𝐜𝐨𝐨𝐨𝐨 should be reduced
to increase edge RMP

 edge RMP maximized

𝐜𝐜𝐜𝐜𝐨𝐨𝐨𝐨 reduces edge RMP

[S.M. Yang, J.-K. Park et al., PRL submitted]
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[COMPASS-U ex-vessel coil size scan] [RMP coupling of In-vessel vs Ex-vessel]

*collaboration with T. Markovic and COMPASS-U team

n=1 RMP optimization using KSTAR 3D coils

• KSTAR has three rows of flexible 3D coil arrays for the n=1 RMP optimization.
• The n=1 (low-n) RMP is attractive for future reactors needing ex-vessel 3D coils to avoid nuclear 

contamination. 
- COMPASS-U ex-vessel coil examples shows the efficiency of low-n RMP (logarithmic decay with n) 

• However, the n=1 RMP is tricky to use as its core RMP penetration is disruptive. (ITPA MDC-19 is 
about low-n core error field correction)
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RMP coupling 
difference

At low-n

At high-n

In-vessel 

Ex-vessel

[KSTAR 3D coil]

A flexible n=1 field is possible



n=1 RMP optimization using KSTAR 3D coils
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[KSTAR 3D coil] [2D view of KSTAR 3D coil]

KSTAR: 3 rows, 5 dimensions (𝑰𝑰𝑻𝑻, 𝑰𝑰𝑴𝑴, 𝑰𝑰𝑩𝑩, 𝚫𝚫𝝓𝝓𝑻𝑻𝑴𝑴, 𝚫𝚫𝝓𝝓𝑴𝑴𝑩𝑩) 

[Planned for DIIID and ITER]
[Weisberg et al., NF 2019]

DIIID: 4 rows (7 dimension)
ITER: 3+3 rows (5+6 dimensions)
 3D optimization will be useful for future

DIIID ITER

• For the safe use of n=1 RMP, we designed edge localized RMP (ERMP) with KSTAR 3D coils. 
• Three rows of RMP coils in KSTAR (as in ITER) allows 5D freedom (Amplitude: 𝐼𝐼𝑇𝑇, 𝐼𝐼𝑅𝑅, 𝐼𝐼𝐵𝐵, phasing: 

Δ𝜙𝜙𝑇𝑇𝑅𝑅, Δ𝜙𝜙𝑅𝑅𝐵𝐵) to improve ELM suppression.
• The ERMP optimization using multiple rows of coils can benefit DIIID & ITER as well.



ELM suppression for the entire period of discharge

• In future reactors, ELMs should be suppressed for the entire period of discharge.
- Single ELM burst is dangerous. This needs ELM suppression at transient entries and exits of H-mode.

• RMP before the L-H transition is the easiest approach.
- This requires multi-target optimization (from L-mode to H-mode)

• L-mode plasma is vulnerable to core LMs due to low density and rotation, especially for n=1 field.
- Core RMP in L-mode (𝛿𝛿𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝐿𝐿 ) turns out to be the most disruptive and limiting force. 
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1. Localize RMP to avoid core LMs

Weighted core removal (𝐜𝐜𝐨𝐨𝐜𝐜𝐩𝐩)

★ ERMP optimization for the entire discharge

LM threshold

ELM supp. threshold

𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻 /𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑡𝑡ℎ
𝐻𝐻

𝛿𝛿𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝐿𝐿 /𝛿𝛿𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒,𝑡𝑡ℎ
𝐿𝐿

★

★

=> Edge localized RMP (ERMP) for experimental application.
GPEC [1] response used for optimization

- Edge RMP gets weaker due to core/edge coupling

2. Penalize localization to suppress ELMs
- Penalty of core RMP increase

[1] J.-K Park et al., POP (2007) 



ELM suppression for the entire period of discharge

• The ERMP optimization allowed the application of n=1 RMP before the L-H transition for ELM 
suppression for the first time. (n=1, strong enough for ELM control, not disruptive in L-mode)

• Other RMPs with different core removal executed as expected 
- #26027 (ELM controlled from the beginning, mitigated at early phase due to q95 evolution)
- #26025 (Disrupted early by LMs)
- #26026 (weak edge RMP, ELM not mitigated)
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ELM supp. threshold

𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻 /𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑡𝑡ℎ
𝐻𝐻

LM threshold

𝛿𝛿𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝐿𝐿 /𝛿𝛿𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒,𝑡𝑡ℎ
𝐿𝐿

#26027
★

#26027★

#26025★

#26025★

#26026★

#26026★

Weighted core removal (𝐜𝐜𝐨𝐨𝐜𝐜𝐩𝐩)

[S.M. Yang, J.-K. Park et al., PRL submitted]



ELM suppression for the entire period of discharge

• ERMPs has a unique operating point in the coil space
- Amplitude, phasing that has never been used.

• ERMP significantly improve safety of n=1 RMP
- Core LM in L-mode (Standard RMP does not work)
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𝐼𝐼𝑇𝑇: 𝐼𝐼𝑅𝑅: 𝐼𝐼𝐵𝐵 = 1: 0.11: 0.85 (Standard [1] : 𝐼𝐼𝑇𝑇 = 𝐼𝐼𝑅𝑅 = 𝐼𝐼𝐵𝐵)
𝜙𝜙𝑇𝑇𝑅𝑅: 𝜙𝜙𝑅𝑅𝐵𝐵 = 170°: 196°(Standard [1] : 𝜙𝜙𝑇𝑇𝑅𝑅 = 𝜙𝜙𝑅𝑅𝐵𝐵 = 90°)

[1] Y.M. Jeon et al., PRL, (2012)

Standard RMP

Weighted core removal (𝑐𝑐𝑐𝑐𝑜𝑜𝑡𝑡)

#26025
#26027

#26026𝛿𝛿𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝐿𝐿 /𝛿𝛿𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐻𝐻

~40 % reduction

=> Validated ERMP significantly improve safety of n=1 RMP

ELM supp. accessible 
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Effect of core-removal at ELM suppressed state

• We ramped up optimized RMP with different core-removal (𝛿𝛿𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝐻𝐻 ) to get ELM suppressed state.
- To see effect of edge localization at the ELM suppressed state.

• We predicted ELM suppression time and safety windows, using two most important optimized RMP.
- #26016 (core removal = 𝟎𝟎): Requires least RMP current for ELM suppression (useful if core RMP is not critical).
- #26015 (core removal = 𝟎𝟎.𝟗𝟗𝟗𝟗): Safety is maximized (More robust with change/uncertainties of plasma condition)

16

Power supply limit
(No disruption)

Overlap in blue shaded 
area/dashed line is a 
safety margin

Weighted core removal (𝑐𝑐𝑐𝑐𝑜𝑜𝑡𝑡)



Benefit of core-removal: Reduced rotation degradation
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𝝎𝝎𝝓𝝓 [𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌/𝒔𝒔]

𝝎𝝎𝝓𝝓 After ELM suppression𝝎𝝎𝝓𝝓 before RMP application

𝝎𝝎𝝓𝝓 [𝒌𝒌𝒌𝒌𝒌𝒌𝒌𝒌/𝒔𝒔]

𝜓𝜓𝑁𝑁 𝜓𝜓𝑁𝑁

#26015 (no RMP)
#26014 (no RMP) 
#26016 (no RMP)

#26015 (core removal = 𝟎𝟎.𝟗𝟗𝟗𝟗)
#26014 (core removal = 𝟎𝟎.𝟗𝟗𝟗𝟗)
#26016 (core removal = 𝟎𝟎)
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10
-2

10 0 Toroidal torque [𝑵𝑵/𝒎𝒎𝟐𝟐]

𝜓𝜓𝑁𝑁
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Time [s]

Profile after ELM suppression

𝚫𝚫𝑫𝑫𝜶𝜶 [A.U.]

#26015, #26014, #26016

• At the initial ELM suppressed phase, a reduction of overall perturbations (with core removal) is 
expected as indicated by NTV response. (#26016 has the largest torque)

• Reduction of NTV (due to core removal) reduces rotation degradation at ELM suppressed state.



0 0.25 0.5 0.75 1

10
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10 0

Benefit of core-removal: Reduced density degradation

• Reducing the core resonant field results in the NTV reduction in ELM suppressed phase.
• Core removal reduces density degradation at ELM suppressed state (e.g., core removal = 𝟎𝟎.𝟗𝟗𝟗𝟗 vs 0)

- Physics of different density degradation is not clear (under investigation, turbulent transport?)
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Toroidal torque [𝑵𝑵/𝒎𝒎𝟐𝟐]

𝜓𝜓𝑁𝑁
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𝒏𝒏𝒆𝒆 before RMP application
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Benefit of core-removal: reduced fast ion loss (simulation)

• Under different core removal, we simulated 
fast ion orbit loss using NuBDeC [1] and GPEC 
simulations.
- 𝜹𝜹𝑩𝑩𝒆𝒆𝒌𝒌𝒆𝒆𝒆𝒆 maintained but 𝜹𝜹𝑩𝑩𝒄𝒄𝒄𝒄𝒌𝒌𝒆𝒆 reduced

• With a reduced core RMP response, simulation 
shows a reduction of fast ion loss.

• Simulation implies that ELM suppression can be 
maintained with improved fast ion 
confinement by core removal 
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edge
core

𝛿𝛿𝐵𝐵
𝑐𝑐𝑒𝑒
𝑟𝑟

[𝑇𝑇
𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇

]

0% core reduction 16% core reduction 32% core reduction

1.5     2.01.5     2.0 1.5     2.0

Core RMP ↓
Fast ion loss ↓

[1] T. Rhee et al., POP (2019) 



Benefit of core-removal: reduced loss to poloidal limiter

• We investigated increase of poloidal limiter temperature to 
validate fast ion orbit loss. (diverted plasma)

• Poloidal limiter temperature increases shows good 
agreement with simulation.

• RMP with core-removal reduced temperature increase of 
poloidal limiter temperature compared to standard RMP.
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[Simulated fast ion loss]

[Experimental result]

#26026 #26027

#26026 #26027

[Simulated fast ion loss]
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0 5 10 15

Time (s)

0

20

40

T-
T

in
it

 (
o

)

 

26026

26027

Standard RMP
Poloidal limiter 
temperature



Summary: Tailoring RMP

• Edge localized RMP is proposed to optimize ELM suppression.
• Validated benefits of core removal in KSTAR are as follows 

- Improved safety in RMP-ELM suppression
- Lessened confinement degradation (rotation and density)
- Lessened poloidal limiter temperature increase

21

 ERMP becomes reference 3D configuration for US-KSTAR long pulse operation considering the benefits
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[Examples of KSTAR long pulse (~30 s) with ERMP]

+ Poloidal limiter temperature < 𝟔𝟔𝟎𝟎𝟎𝟎𝟔𝟔𝟔 limit 

(ex. Robust during performance degradation in long pulse operation)

(This was a critical issue in KSTAR long pulse)



Outline

 Introduction
 Tailoring 3D field

• Method
• ELM suppression for the entire period of discharge with n=1 field
• Additional benefits of the ERMP scheme

- ELM suppression with reduced confinement degradation
- Control of RMP induced fast ion orbit loss to reduce wall heating

 Other approaches to improve 3D field-induced degradation
- Preventing core RMP penetration
- NTV control (electron NTV and torque matrix)
- Understanding 3D field-induced L-H transition delay

 Future work 
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Localized ECCD to prevent core RMP penetration 

• Preventing core RMP penetration was a key to improve the safety (degradation as well) of ELM 
suppression.

23

[Reduction of external 𝛿𝛿𝐵𝐵21, GPEC simulation] [Increase of EF threshold, TM1 simulation]
ECCD location

Core RMP 
threshold

𝑰𝑰𝑬𝑬𝟔𝟔𝟔𝟔𝑫𝑫/𝑰𝑰𝒑𝒑 [%]

𝑰𝑰𝑹𝑹𝑴𝑴𝑷𝑷,𝒄𝒄𝒌𝒌𝒄𝒄𝒄𝒄[A.U.]

Jump

[More ECCD, higher EF allowed]

[Courtesy of Q. Hu] 

• Simulation result shows that localized ECCD prevents core RMP penetration.
- GPEC has shown that local current profile can reduce external drive for tearing (Δ𝑒𝑒𝑥𝑥𝑡𝑡′ , It is different from replacing bootstrap current).
- TM1 has shown that ECCD can increase the core RMP threshold

• This can significantly improve low-n RMP ELM suppression in any scenario by reducing core LM 
potential while maintaining strong edge RMP. (𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅,𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 is required RMP for penetration)



• ECCD is applied with a different toroidal angles to see the change of the LM threshold in KSTAR. 
- To modify localized current drive while maintaining same heating power

• Only injection angle of 15° shows different LM threshold compared with 20° and −20°, possibly 
due to its injection near the q=2 surface. (No RMP ELM suppression at 𝑞𝑞95~ 6.2.)

• More experiments are required for validation (more promising in DIII-D)

Localized ECCD to prevent core RMP penetration 
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Toray calculation: 
ECCD toroidal angle: 20°, -20°,  15°

Heating power (TORAY)

EC current drive (TORAY)

0

2

4

 

2
4
6
8

 
2 4 6 8 10 12

1

2

3

RMP amp. [kA]
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�𝒏𝒏𝒆𝒆 [𝟏𝟏𝟎𝟎𝟏𝟏𝟗𝟗𝒎𝒎−𝟑𝟑]

ECCD toroidal angle: 20°, -20°,  15°

Time [s]

-20° vs  15° injection
- Similar heating power
- Different localized current drive



Understanding core RMP threshold

• We also tried to find robust regime in core RMP penetration .

- Core RMP becomes more dangerous at high Bt
- Toroidal rotation can stabilize core RMP penetration
- Density dependence shows non-monotonic dependence.

• A role over of density dependence can be explained with modified 
theoretical error field (EF) scaling with LOC-SOC transition.
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[1] S.M. Yang et al., Nuclear Fusion (2021)

EF scaling in LOC [2]:𝛿𝛿𝐵𝐵𝑐𝑐/𝐵𝐵𝑇𝑇 ∝ 𝑛𝑛𝑒𝑒1 𝐵𝐵𝑇𝑇
−9/5𝑅𝑅0

−1/4 EF scaling in SOC [1]:𝜹𝜹𝑩𝑩𝒌𝒌
𝑩𝑩𝑻𝑻

∝ 𝒏𝒏𝒆𝒆
𝟒𝟒/𝟗𝟗𝟎𝟎 𝑩𝑩𝑻𝑻

−𝟗𝟗𝟗𝟗/𝟗𝟗𝟎𝟎𝑹𝑹𝟎𝟎
𝟏𝟏𝟏𝟏/𝟗𝟗𝟎𝟎

[2] R. Fitzptrick et al., PPCF (2012)]



Rotation control to improve core RMP threshold
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• If 3D field can accelerate plasma rotation, this can also improve core RMP threshold.

• Experiment show that plasma rotation can be accelerated by 3D field
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Time (𝑇𝑇)

𝜔𝜔
𝜙𝜙

(𝑘𝑘
𝑘𝑘𝑇𝑇
𝑘𝑘/
𝑇𝑇)

3D field
𝐼𝐼 𝐼𝐼𝐼𝐼

𝐼𝐼𝐼𝐼
(𝑘𝑘
𝐴𝐴)

#19115
#19117
#19118

Acceleration𝜔𝜔𝜙𝜙(𝑞𝑞~2)

𝜔𝜔𝜙𝜙0

Increase of core RMP threshold

Plasma rotation

- This result to the increase of core RMP threshold.
- # 19115 shows acceleration of plasma rotation. (unlike other discharges)



Rotation control to improve core RMP threshold
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• We validated that electron NTV accelerates plasma rotation.
- Rotation acceleration toward NTV offset is observed 
- Simulation quantitatively agrees with measured response torque. 

2.2 2.4 2.6 2.8
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Time (𝑇𝑇)

#19115

#19117

#19118

𝜔𝜔
𝜙𝜙

(𝑘𝑘
𝑘𝑘𝑇𝑇
𝑘𝑘/
𝑇𝑇)

n=1, p90

𝐼𝐼 𝐼𝐼𝐼𝐼
𝐼𝐼𝐼𝐼

(𝑘𝑘
𝐴𝐴)

𝜌𝜌 ~ 0.3
𝜔𝜔𝜙𝜙

𝜔𝜔𝜙𝜙

𝑡𝑡 = 2.35 𝑇𝑇 𝑡𝑡 = 2.55 𝑇𝑇

[Rotation acceleration with applied 3D field] [Estimated NTV offset]

[S. M. Yang, J.-K. Park et al., PRL (2019)]



Rotation control to improve core RMP threshold
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• We validated that electron NTV accelerates plasma rotation.
- Rotation acceleration toward NTV offset is observed 
- Simulation quantitatively agrees with measured response torque. 

No resistive response With resistive response

With resistiveNo resistive Experiment

2D displacement contour

[Measured response]

[Measured torque]

=> Rotation acceleration (electron NTV) improved core RMP threshold.
[S. M. Yang, J.-K. Park et al., PRL (2019)]



Optimizing NTV using torque response matrix
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• A further optimization of NTV is possible using torque response matrix.

• The eigenvector of torque response matrix with minimum eigenvalue, QSMP is validated in KSTAR.
- RMP caused density pump, 𝑇𝑇𝑒𝑒 degradation, and rotation damping.
- NRMP drives rotation damping without density&𝑇𝑇𝑒𝑒 degradation. 
- QSMP did not show any degradation.

[J.-K. Park, S.M. Yang et al., PRL (2021)]

[J.-K. Park et al., POP (2017)]

=> NTV optimization is validated in KSTAR. It can be used to improve core RMP threshold



Outline

 Introduction
 Tailoring 3D field

• Method
• ELM suppression for the entire period of discharge with n=1 field
• Additional benefits of the ERMP scheme

- ELM suppression with reduced confinement degradation
- Control of RMP induced fast ion orbit loss to reduce wall heating

 Other approaches to improve 3D field-induced degradation
- Preventing core RMP penetration
- NTV control (electron NTV and torque matrix)
- Understanding 3D field-induced L-H transition delay

 Future work 
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Introduction: Zonal flow and 3D field in L-H transition

• A fluctuating small scale 𝐸𝐸 × 𝐵𝐵 shear such as zonal flow is understood as a triggering mechanism of 
L-H transition in tokamak. 

• Recent study showed that 3D field can increase effect on turbulence transport, particularly in L-H 
transition power threshold.

31[I. Shesteikov et al., PRL, 2013].

[Y. In et al., NF, 2017] [L. Schmitz et al., NF, 2019]

[3D field VS L-H power threshold ]
KSTAR DIII-D



Observation of limit-cycle oscillation before L-H transition

• We found oscillation of 𝐷𝐷𝛼𝛼, increase of �𝑛𝑛𝑒𝑒, 𝑇𝑇𝑒𝑒 that indicates confinement enhancement right 
between L-mode and H-mode phase in KSTAR.

• The observation in KSTAR before L-H transition resembles zonal flow oscillation in DIII-D, which 
shows edge density and temperature increase.
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[Zonal flow oscillation in DIIID]

[L. Schmitz et al., PRL 2012]

L-mode

[Oscillation before L-H transition in KSTAR]
H-mode
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RMP optimization improves L-H transition delay

• RMP optimization improves L-H transition delay and turbulence (nonlinear interaction).
- With less removal of RMP (𝑐𝑐𝑐𝑐𝑜𝑜𝑡𝑡 = 0.91 vs 𝑐𝑐𝑐𝑐𝑜𝑜𝑡𝑡 = 1), nonlinear interaction is reduced even with increased turbulence.

• Reduction of the zonal flow could be the primary reason for the observed delay of L-H transition.
• Note that RMP optimization for L-H transition should include plasma response. (Vacuum vs total Chirikov) 

[Zonal flow oscillation affected by RMP optimization]

𝐷𝐷𝛼𝛼 (𝐴𝐴.𝑈𝑈. )

�𝑛𝑛𝑒𝑒 1019𝑚𝑚−3

𝑇𝑇𝑒𝑒(𝑘𝑘𝑇𝑇𝑉𝑉)

𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅(𝑘𝑘𝐴𝐴)

𝑃𝑃𝑁𝑁𝐵𝐵𝐼𝐼(𝑀𝑀𝑀𝑀)
𝒄𝒄𝒄𝒄𝒑𝒑𝒄𝒄 = 𝟎𝟎.𝟗𝟗𝟏𝟏

𝒄𝒄𝒄𝒄𝒑𝒑𝒄𝒄 = 𝟏𝟏

H-modeL-mode oscillations

Time (s)

No such oscillation

No LH transition
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turbulence
increase

[RMP suppress non-linear interaction][RMP optimization result]

zonal flow

𝑐𝑐𝑐𝑐𝑜𝑜𝑡𝑡 = 1 𝑐𝑐𝑐𝑐𝑜𝑜𝑡𝑡 = 0.91

zonal flow no interaction



Future work

• ELM control coils for other devices (e.g., next phase of KSTAR including K-DEMO) will be studied 
- Based on the ERMP scheme, as already studied for KSTAR and COMPASS-U.

[Geometry optimized KSTAR coil] [Ex-vessel and in-vessel COMPASS-U coil]
- ERMP scheme applied to improve ELM suppression
- Stellarator tool applied to optimize geometry
=>141 % increase of safe ELM suppressed window

[S.M. Yang et al., NF, 2020]

- Efficiency of ex-vessel coil tested (ERMP applied)
- Best option chosen with given realistic coil geometry

[J. K. Park et al., COMPASS Final Design review (2021)]



Future work

• Extension of validated ERMP optimization scheme for ITER application
- High-n optimization will be done with better diagnostics (run-time (1.5 day) expected in DIII-D)
- Physics of lessened confinement degradation will be investigated in both KSTAR and DIII-D.

• Validation of fast ion loss study under 3D field
- More experimental (KSTAR + DIII-D) and simulation (NubDec + ORBIT) is planned.

• Validation of ECCD effect on core RMP threshold 
- Propose more experiments, analyze existing data in KSTAR (DIII-D, run-time requested but …)

• Turbulence study to understand RMP induced L-H transition delay
- Analyze turbulence measurement (ECEI) to see nonlinear interaction change and its structure
- Application to negative triangularity discharge to prevent L-H transition

• Heat flux under RMP
- Continue collaboration with UW-Madison (supports EMC3-EIRNE simulation in KSTAR).
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Back up : q95 window of ELM suppression in KSTAR

[ ELM suppressed discharge ]

• Why initial ELMs are not suppressed?
-These initial ELMs can be related to 𝑞𝑞95 windows (4.85 < 𝑞𝑞95< 5.5)

Not suppressed Initial ELMs

Empirical 𝑞𝑞95 window

• When 𝑞𝑞95 is controlled initial ELM crashes are 
suppressed.

𝑃𝑃 𝑁𝑁
𝐵𝐵
𝐼𝐼

(𝑀𝑀
𝑀𝑀

)
𝐼𝐼 𝑅𝑅
𝑅𝑅
𝑅𝑅

(𝑘𝑘
𝐴𝐴)

𝐷𝐷 𝛼𝛼
(𝐴𝐴

.𝑈𝑈
.)

𝑞𝑞 9
5

Difficult RMP ELM suppression

[Shin et al., Nuclear Fusion (2022)]

* Radial position control coil is not available with a flexible 3D setup 
* So, shaping control is not good enough during the transient phase



Back up : 3D optimization with existing coils: Validation in KSTAR

• Three different RMP spectrum is investigated at 𝑃𝑃𝑁𝑁𝐵𝐵 = 3.9 𝑀𝑀𝑀𝑀 target discharge.
- 90 degree phasing  (26022)
- Largest window (26023)
- Ideal edge localized RMP until 9s (26024)
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𝛽𝛽 𝑁𝑁

• The window was narrower at higher 𝑷𝑷𝑵𝑵𝑩𝑩
as empirical found in KSTAR.

• One can expand ELM suppression window 
for this target by 3D optimization.

• Ideal edge localized RMP is too weak as 
expected. It can lock the plasma by raising 
mid coil current after 9s.



Back up : Density degradation cross calibration& across different target
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• ERMP shows less increase of central diverter temperature than other RMP with a similar 
plasma condition (even with a slightly higher edge RMP level).

• ERMP shows increased wet area with comparable peak heat flux for all toroidal angles. 
• Rotating RMP will also be used to estimate the fast ion orbit loss.

Back up : ERMP reduced diverter temperature increase

40KSTAR session review / S.M. Yang

30304 (other RMP) vs 30306 (ERMP)
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Back up : ELM suppression for the entire period of discharge

• In future reactors, ELMs should be suppressed for the entire period of discharge.
- This needs ELM suppression at transient entries and exits of H-mode.

• Easiest approach is to apply RMP before the L-H transition 
- This requires multi-target optimization (from L-mode to H-mode)

• L-mode plasma has low density and rotation and is vulnerable to core LMs, especially for n=1 field. 
• n=1 (low-n) RMP is attractive for future reactors needing ex-vessel 3D coils to avoid nuclear 

contamination. Great synergy with edge localized RMP.
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[COMPASS-U ex-vessel coil size scan] [RMP coupling of In-vessel vs Ex-vessel]

RMP coupling 
difference

At low-n

At high-n

In-vessel 

Ex-vessel

*collaboration with T. Markovic and COMPASS-U team

[Density vs. n=1 core RMP threshold]

[J.-K. Park et al., NF, 2012]



Back up : RMP optimization for efficient L-H transition 

• Removal of RMP in L-mode with 𝒄𝒄𝒄𝒄𝒑𝒑𝒄𝒄 is validated with efficient L-H transition.
- At 𝒄𝒄𝒄𝒄𝒑𝒑𝒄𝒄 = 𝟎𝟎.𝟗𝟗𝟏𝟏, edge turbulence increase, �n𝑒𝑒and 𝑣𝑣⊥ change is observed with 𝒄𝒄𝑳𝑳𝑳𝑳 = 𝟐𝟐.𝟔𝟔𝟔𝟔 𝒔𝒔

- At 𝒄𝒄𝒄𝒄𝒑𝒑𝒄𝒄 = 𝟏𝟏, no change in turbulence with 𝒄𝒄𝑳𝑳𝑳𝑳 = 𝟐𝟐.𝟒𝟒𝟗𝟗 𝒔𝒔 (even without additional heating)
More efficient L-H transition with 𝒄𝒄𝒄𝒄𝒑𝒑𝒄𝒄 = 𝟏𝟏

• Note that vacuum response is not decreased at 𝒄𝒄𝒄𝒄𝒑𝒑𝒄𝒄 = 𝟏𝟏 unlike total response.
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#26027 (𝒄𝒄𝒄𝒄𝒑𝒑𝒄𝒄 = 𝟎𝟎.𝟗𝟗𝟏𝟏) #26026 (𝒄𝒄𝒄𝒄𝒑𝒑𝒄𝒄 = 𝟏𝟏)
𝒄𝒄𝑳𝑳𝑳𝑳 = 𝟐𝟐.𝟔𝟔𝟔𝟔 𝒔𝒔 𝒄𝒄𝑳𝑳𝑳𝑳 = 𝟐𝟐.𝟒𝟒𝟗𝟗 𝒔𝒔
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3D field induced L-H transition delay due to turbulence change

• A necessity of integrated optimization implies the importance of RMP control during the transient 
phase such as L-H transition.

• We found that zonal flow oscillation and non-linear interaction are affected by RMP optimization.
• Reduction of the zonal flow could be the primary reason for the observed delay of L-H transition.
• A physics behind this behavior is under investigation but the early opening of edge island is a candidate.

already favorable 
𝑣𝑣⊥,𝑜𝑜𝑒𝑒𝑒𝑒~0 due to RMP L-H transition

Time (s)

�𝑛𝑛𝑒𝑒 1019𝑚𝑚−3

𝑇𝑇𝑒𝑒,𝑞𝑞~2(𝑘𝑘𝑇𝑇𝑉𝑉)

𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅(𝑘𝑘𝐴𝐴)

[stationary 𝑣𝑣⊥,𝑜𝑜𝑒𝑒𝑒𝑒 evolution] [edge density drop] [edge turbulence increase]

stronger RMP
weaker RMP
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Back up : 3D coil design with edge localized RMP

• Edge localized RMP can significantly improve the design of ELM control coils.

• The modified coil size and location based on the edge-localized RMP shows that the ELM suppression 
window can be expanded. (41 % increase of safe ELM suppressed window)

• A geometry optimization with FOCUS can further improve the ELM suppression window. 

44

Dominantly non-resonant 𝛿𝛿𝐵𝐵
(No strong change)

Plasma disrupted window
(From core 𝜹𝜹𝑩𝑩)

safe ELM suppressed window 
(From edge 𝜹𝜹𝑩𝑩)

3 important region with 3D coil

(141 % increase of safe ELM suppressed window)
[S.M. Yang et al., NF, 2020]



DIIID Breakout result (preliminary)

 Optimizing RMP across the L to H confinement modes to suppress ELMs
● Tier 1 priority  in ELM control ROF (1 day + 1 LRHO)

- “Entering H-mode without an ELM, then minimizing confinement degradation n =3 RMP ELM    
suppression” (1 day + 1 LRHO)

● High chance to get shots in prepare for ITER ROF (0.5 day)
- “Entering H-mode without an ELM, then minimizing confinement degradation n =3 RMP ELM    

suppression” (0.5 day)
● Piggyback planned in Core-edge integration ROF (1 day + 1 LRHO)

- “Integrate RMP ELM control with divertor detachment in closed divertor” (1 Day+1 LRHO)
● Piggyback being discussed for n=2 RMP ELM suppression in ELM control ROF

• Introduced ERMP optimization scheme will be applied to DIII-D tokamak at higher-n with better 
diagnostics



Back up: Systematic RMP localization approach

• A systematic approach can minimize core response and maximize edge response by introducing core-
null space projection, 𝑃𝑃𝑐𝑐,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. 

• This edge localized RMP shows relatively good efficiency while completely eliminating core resonant 
response (core 𝛿𝛿𝐵𝐵=0, small penalty in edge 𝛿𝛿𝐵𝐵). 
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[Calculation of efficient edge-localized RMP]
[S.M. Yang et al., NF, 2020]

Zero 𝛿𝛿𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒
∵ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒 ⋅ 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑥𝑥 = 0

𝛿𝛿𝐵𝐵
𝑐𝑐𝑒𝑒
𝑟𝑟

𝜓𝜓𝑁𝑁



Back up: RMP effect on zonal flow 

• Experimental evidence of zonal flow oscillation and its suppression due to RMP is found in KSTAR.
• Experimental results imply a role of RMP in zonal-flow turbulence interaction.

- With RMP, reduction of nonlinear interaction is shown even with increase turbulence level.
- With RMP, LCO frequency becomes higher even with lower collisionality, which is counter-intuitive
to the linear collisional zonal flow damping rate.
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𝐷𝐷𝛼𝛼 (𝐴𝐴.𝑈𝑈. )

�𝑛𝑛𝑒𝑒 1019𝑚𝑚−3

𝑇𝑇𝑒𝑒(𝑘𝑘𝑇𝑇𝑉𝑉)

𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅(𝑘𝑘𝐴𝐴)

𝑃𝑃𝑁𝑁𝐵𝐵𝐼𝐼(𝑀𝑀𝑀𝑀)
stronger RMP
weaker RMP

H-modeL-mode Limit cycle oscillations

Time (s)

No such oscillation

No LH transition

turbulence
increase

Weaker RMP
Stronger RMP

[limit cycle oscillation in KSTAR] [RMP induced reduction in bi-coherence]

zonal flow

[RMP induced LCO frequency change]
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Back up: Limit-cycle oscillation in KSTAR

• Although direct 𝑣𝑣𝐸𝐸×𝐵𝐵 is not available, modulation of turbulence (𝛿𝛿𝑇𝑇𝑒𝑒 , 𝛿𝛿𝑛𝑛𝑒𝑒) during the LCO in 
KSTAR is very similar to zonal flow oscillation in DIIID.

• A 𝛿𝛿𝑇𝑇𝑒𝑒 fluctuation shows poloidally elongated structure that indicates that it is m=0 structure.

[poloidal 𝛿𝛿𝑇𝑇𝑒𝑒 structure ]
*plasma is rotating electron diamagnetic direction

[modulation of fluctuation with LCO]

[during LCO in KSTAR][Zonal flow oscillation in DIIID]

[L. Schmitz et al., PRL 2012]

𝜹𝜹𝑻𝑻𝒆𝒆

𝜹𝜹𝒏𝒏𝒆𝒆






Back up: Limit-cycle oscillation in KSTAR

• We found that 𝐷𝐷𝛼𝛼 peak is related to the minimum turbulence amplitude. (Rising 𝐷𝐷𝛼𝛼 include zonal flow max)

• We found that nonlinear interaction is much more active during zonal flow grow phase.
• This may imply that Reynolds-stress-driven energy transfer only becomes significant when the 

turbulence is driving zonal flow.
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Rising 𝐷𝐷𝛼𝛼
Falling 𝐷𝐷𝛼𝛼

Time (s)
Rising 𝐷𝐷𝛼𝛼~ include zonal flow max
Falling 𝐷𝐷𝛼𝛼~ turbulence grow



Back up: Limit-cycle oscillation in KSTAR
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Rising 𝐷𝐷𝛼𝛼~ include zonal flow max
Falling 𝐷𝐷𝛼𝛼~ turbulence grow

Zonal flow

• We found that 𝐷𝐷𝛼𝛼 peak is related to the minimum turbulence amplitude. (Rising 𝐷𝐷𝛼𝛼~ zonal flow max)

• We found that nonlinear interaction is much more active during zonal flow grow phase.
• This may imply that Reynolds-stress-driven energy transfer only becomes significant when the 

turbulence is driving zonal flow.



3D optimization with existing coils: Diverter wetted area

• Three different RMP spectrum is investigated by 3D optimization.
- 90degree phasing  (26014): between 26015&26016
- Largest window (26015): later locking
- Most efficient RMP (26016): earlier locking

• Diverter wetted area (𝐴𝐴𝑤𝑤𝑒𝑒𝑡𝑡) is proportional to edge IPEC resonant field?
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[Diverter wetted area vs edge resonant field]



Introduction

• Optimization of 3D magnetic field needs an understanding of 𝛿𝛿𝐵𝐵res, 𝐵𝐵pen,𝑡𝑡ℎ and 𝛿𝛿𝐵𝐵NR.
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𝛿𝛿𝐵𝐵 consists of 𝛿𝛿𝐵𝐵res, 𝛿𝛿𝐵𝐵NR

[Park et al., Nature Physics, 2018]

 Resonant field (𝛿𝛿𝐵𝐵res) : 3D field resonant with equilibrium field line pitch 𝑞𝑞 = 𝑚𝑚
𝑛𝑛

.

- 𝛿𝛿𝐵𝐵res drives field penetration when 𝛿𝛿𝐵𝐵res ≫ 𝐵𝐵pen,𝑡𝑡ℎ(ne ,𝜔𝜔𝜙𝜙, … )
- Known to be responsible for ELM suppression and mode locking

 Non-resonant field (𝛿𝛿𝐵𝐵NR) : 3D field that does not resonant 
- 𝛿𝛿𝐵𝐵NR is not resonant, but it can change plasma rotation.
- Change of rotation can affect 𝐵𝐵pen,𝑡𝑡ℎ(ne ,𝜔𝜔𝜙𝜙 , … )

• This work will mainly cover resonant field 𝛿𝛿𝐵𝐵res
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