Exploring the impact of 3D fields, beta limits and non-resonant modes with nonlinear MHD

Adelle Wright Princeton Plasma Physics Laboratory

> NSTX-U meeting (February 28th, 2022)

Email: awright@pppl.gov

- Challenges associated with modelling 3D fields
- Exploring β -limits in stellarators with M3D-C¹
- Outlook: Summary and on-going work

• Assessing reduced models as tools for efficient calculation of 3D equilibria

• Examining the role of non-resonant modes in the formation of 3D fields

- Challenges associated with modelling 3D fields
- Exploring β -limits in stellarators with M3D-C¹

• Outlook: Summary and on-going work

• Assessing reduced models as tools for efficient calculation of 3D equilibria

• Examining the role of non-resonant modes in the formation of 3D fields

3D magnetic fields are fundamentally different

- Breaking axisymmetry ($\partial_{\phi} \not\rightarrow 0$) fundamentally changes the properties of magnetic fields:
- plasma performance. But they can be challenging to model and understand.

For (much) more theoretical detail:

An Introduction to Stellarators From magnetic fields to symmetries and optimization

Lise-Marie Imbert-Gérard, Elizabeth J. Paul, Adelle M. Wright

A self-contained introduction covering the basic theoretical building blocks for modelling 3D magnetic fields, with applications to fusion device optimisation and design.

- Early version available on arxiv [1].
- Coming in book form soon(-ish)!

Non-integrability of the magnetic field line Hamiltonian \rightarrow continuously nested flux surfaces no longer guaranteed. 3D magnetic fields admit additional structures (e.g., islands and chaos) that can be leveraged to improve fusion

ontents		i
Chall	enges assoc	ciated with 3D equilibrium fields
12.1	From exi	stence to non-existence of magnetic surfaces
	12.1.1	Analysis of the vector potential
	12.1.2	Variational principle for field line flow
	12.1.3	Relation to Hamiltonian dynamics
12.2	Integrabi	lity of Hamiltonian systems and existence of flux surfaces 94
	12.2.1	Definition of integrability
	12.2.2	Hamilton-Jacobi method
	12.2.3	Action-angle coordinates
	12.2.4	Perturbations about integrability
	12.2.5	Persistence of some flux surfaces: KAM theory 10
12.3	Singulari	ties and surface currents in 3D ideal MHD
	12.3.1	Computation of the parallel current density
	12.3.2	Overcoming the $1/x$ singularity at rational surfaces
	12.3.3	Delta function singularities
	12.3.4	Islands and surface currents in a simplified model
12.4	Beyond i	deal MHD equilibria
	12.4.1	Resistive MHD
	12.4.2	Other diffusion effects: Momentum and pressure
	12.4.3	An iterative method for approximate MHD equilibria 12
	12.4.3	An iterative method for approximate MHD equilibria 1

Modelling 3D magnetic fields can be challenging

<u>Approach 1: Time-evolution models (i.e., initial-value methods)</u>

- More complicated models circumvent challenges associated with solving $\mathbf{J} \times \mathbf{B} = \nabla p$ in 3D (see below).
- Comparatively slow and expensive to evaluate. E.g., 3D tokamak simulation with M3D-C¹ \sim 10⁵ CPU hrs/run.
 - Tools to rapidly calculate 3D fields are needed for optimisation and reconstruction.

Approach 2: Equilibrium models ($\mathbf{J} \times \mathbf{B} = \nabla p$)

- Comparatively fast and cheap to evaluate. E.g., Non-axisymmetric VMEC equilibrium \sim 1-10 CPU hrs.
- Pfirsch-Schlüter currents are unbounded when $\nabla p \neq 0$ on rational surfaces \rightarrow unphysical.
 - How should realistic (e.g., smooth) pressure profiles be represented in these models?
- Dynamical accessibility of solutions is not guaranteed. If an equilibrium code predicts a finite- β equilibrium with chaotic fields and magnetic islands:
 - Can the plasma actually reach this state with heating?
 - What happens if the system crosses a stability boundary?

3

• Challenges associated with modelling 3D fields

- Exploring β -limits in stellarators with M3D-C¹
- Outlook: Summary and on-going work

Assessing reduced models as tools for efficient calculation of 3D equilibria

• Examining the role of non-resonant modes in the formation of 3D fields

Multi-Region Relaxed MHD (MRxMHD) [2,3]: A discontinuous equilibrium model based on energy minimisation

• The plasma discretised into N volumes and the MRxMHD energy functional, F, is minimised subject to a finite set of constraints:

$$F = \sum_{i}^{N} \left[\int_{V_{i}} \left(\frac{p_{i}}{\gamma - 1} + \frac{B^{2}}{2} \right) dv - \frac{\mu_{i}}{2} \left(K_{i} - K_{0,i} \right) \right]$$

Potential energy (in each *i*). Helicity constraint (in

- •
- MRxMHD is the theoretical basis of the Stepped Pressure Equilibrium Code (SPEC) [4]. ullet

[2] Hole et al., Journal of Plasma Physics 72.6 (2006); [3] Dewar et al., Journal of Plasma Physics 81.6 (2015); [4] Hudson et al., Physics of Plasmas 19.11 (2012).

Pressure profiles are approximated by piece-wise constant (i.e., stepped) function $\rightarrow \nabla p = 0$ on rational surfaces.

Under what conditions:

Are MRxMHD/SPEC solutions dynamically accessible? Is SPEC a viable tool for modelling plasma response to RMPs?

Assessing SPEC as a tool for rapidly calculating 3D response fields

Motivation:

Can SPEC be used to model the nonlinear + non-ideal plasma response to RMPs in realistic geometries? [5]

Equilibrium characteristics:

- $a/R_0 = 0.1$, $\beta = 0.82\%$ and $1.3 \le q \le 4$.
- Unstable to (2,1), (3,2), (6,4), (7,5) tearing modes and (4,3) \bullet interchange.

<u>M3D-C¹ (reference solutions):</u>

- Solves extended-MHD model.
- Visco-resistive single fluid MHD with simple anisotropic heat \bullet transport (finite $\kappa_{\parallel}/\kappa_{\perp}$).
- Vacuum (m = 2, n = 1) RMP field applied. (Possible due to absence of mode coupling in cylindrical geometry).

Survey of M3D-C¹ simulations shows distinct types of plasma response

<u>Reference solutions are calculated with M3D-C¹</u>: A vacuum (m = 2, n = 1) RMP field applied (δB_r).

 $0.1 \,\mathrm{mT} \le \delta B_r \le 2 \,\mathrm{mT} \ \oplus \ t = 5000 \,\tau_A$ $(\delta B_r / B_t \in [10^{-4}, 2 \cdot 10^{-3}])$

 $0.1 \,\mathrm{mT} \le \delta B_r \le 0.5 \,\mathrm{mT}$:

Saturated (2,1) island at q = 2

resonant surface.

Parameters:

 $S = 8 \cdot 10^6$ $\eta = 2.74 \,\Omega \cdot \mathrm{m}$ $P_{m} = 1$ $\kappa_{\parallel}/\kappa_{\perp} = 10^6$ $\chi_{\perp} = 2.2 \text{ m}^2/\text{s}$ $0.6 \,\mathrm{mT} \le \delta B_r \le 0.9 \,\mathrm{mT}$:

Formation of secondary island

chains and break up of separatrix.

 $\delta B_r \geq 1 \,\mathrm{mT}$:

Remnants of the (2,1) island are

embedded in a sea of chaos.

New workflow developed for preparing SPEC input profiles

SPEC:

- Solves MRxMHD (equilibrium) model.
- Requires $\{p_i, \mu_i, \Psi_{t,i}, \Psi_{p,i}, \mathcal{K}_i\}$ to be specified to compute solutions.
- How should realistic (e.g., smooth) pressure profiles be represented in SPEC?

In this work:

- The plasma is partitioned into $N_{vol} = 5$ volumes.
- We develop a workflow for discretization of smooth input profiles (here, analytic but could be taken from reconstructed profiles).

In the weakly nonlinear regime, SPEC can recover the M3D-C¹ RMP response

- The toroidal flux in the volume containing the q = 2 resonant surface, $\Psi_{t,i=3}$, has a significant effect on the island properties in SPEC.
- For suitably chosen value of $\Psi_{t,i=3}$, SPEC shows good agreement with M3D-C¹ in the weakly nonlinear regime, i.e., when RMP response \rightarrow saturated (2,1) island and separatrix remains intact.

SPEC and M3D-C¹ responses differ in when 3D field strength is increased

For larger RMPs amplitudes ($\delta B_r > 0.5 \text{ mT}$), the plasma response calculated by SPEC and M3D-C¹ differ:

• The transition occurs where M3D-C¹ shows break up of the separatrix.

- If so, what are the implications for the validity/applicability of the MRxMHD model?

Next steps (w/ P. Kim):

Do MRxMHD interfaces coincide with internal transport barriers, as observed in experiment?

Next steps and future work

What is the role of finite $\kappa_{\parallel}/\kappa_{\perp}$ is determining the applicability of MRxMHD/SPEC to model 3D field responses?

- M3D-C¹ profiles show significant pressure gradients, even when there is significant volume of chaotic fields.
- By contrast, the MRxMHD model requires $\nabla p = 0$ in regions of chaotic fields.

Exploring SPEC as a tool for modelling internal relaxation events (e.g., helical core states) on NSTX-U.

- Challenges associated with modelling 3D fields
- Exploring β -limits in stellarators with M3D-C¹
- Outlook: Summary and on-going work

• Assessing reduced models as tools for efficient calculation of 3D equilibria

• Examining the role of non-resonant modes in the formation of 3D fields

Understanding nonlinear MHD stability is important for fusion

Like tokamaks, stellarators can be susceptible to (sometimes disruptive) pressure- and current-driven instabilities:

Clarifying the role of 3D effects is critical for determining when instabilities are benign or become disruptive.

11

M3D-C¹ successfully extended to stellarator geometry

- M3D-C¹ recently extended to accommodate strongly shaped, non-axisymmetric computational domains [8]: Fixed boundary: req. boundary shape specification
- **Free-boundary:** req. boundary shape specification + MGRID (vacuum) or FIELDLINES ($\beta > 0$)

With M3D-C¹, we now have first-of-a-kind capability to explore nonlinear MHD in stellarators.

With this, we can now examine (important) questions that could not be addressed previously:

- Evolution of pressure profiles for self-consistent equilibria, including for non-integrable fields.
- Examine dynamical accessibility of 3D equilibria (integrable and non-integrable). \bullet
- Determine nonlinear stability. \bullet

including pellet injection, resistive wall physics and transport in 3D fields.

In principle, the existing suite of M3D-C¹ capabilities can be used directly to model additional phenomena

- Model equations expanded in cylindrical (R, φ, Z) coordinates.

M3D-C¹-S (method)

Numerical integration performed in 'logical' (x, y, z) coordinates by mapping finite elements from $(R, \varphi, Z) \rightarrow (x, y, z)$.

M3D-C¹ model (single-fluid and two-fluid) $\frac{\partial n}{\partial t} + \nabla \cdot (n\vec{u}) = 0$ $nm_i \left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} \right) = \vec{J} \times \vec{B} - \nabla p - \nabla \cdot \Pi + \vec{F}$ $\frac{\partial p}{\partial t} + \vec{u} \cdot \nabla p + \Gamma p \nabla \cdot \vec{u} = (\Gamma - 1) \left[Q - \nabla \cdot \vec{q} + \eta J^2 - \vec{u} \cdot \vec{F} - \Pi : \nabla u \right]$ $+\frac{1}{ne}\vec{J}\cdot\left(\frac{\nabla n}{n}p_{e}-\nabla p_{e}\right)+(\Gamma-1)\Pi_{e}:\nabla\left(\frac{1}{ne}\vec{J}\right)$ $\frac{dp_e}{dt} + \vec{u} \cdot \nabla p_e + \Gamma p_e \nabla \cdot \vec{u} = (\Gamma - 1) \left[Q_e - \vec{q}_e + \eta J^2 - \vec{u} \cdot \vec{F}_e - \Pi_e : \nabla u \right]$ $+\frac{1}{ne}\vec{J}\cdot\left(\frac{\nabla n}{n}p_{e}-\nabla p_{e}\right)+(\Gamma-1)\left[\Pi_{e}:\nabla\left(\frac{1}{ne}\vec{J}\right)+\frac{1}{ne}\vec{J}\cdot\vec{F}_{e}\right]$ $\vec{E} = -\vec{u} \times \vec{B} + \eta \vec{J} + \frac{1}{n e} \left(\vec{J} \times \vec{B} - \nabla p_e - \nabla \cdot \Pi_e + \vec{F}_e \right)$ $\vec{J} = \frac{1}{\mu_0} \nabla \times \vec{B}$ ∂B $\overline{dt} = -\nabla \times E$ $\vec{q}_{(i,e)} = -\kappa_{(i,e)}^{\perp} \nabla T_{(i,e)} - \kappa_{(i,e)}^{\parallel} \frac{\vec{B}\vec{B} \cdot \nabla T_{(i,e)}}{B^2}$

Nominal Machine Specification of the LHD*

Major radius Minor radius of helical coil Minor radius of plasma Magnetic field	3.9 m 0.975 m 0.5 to 0.65 m 3 T at <i>R</i> = 3.9 m	(2.96 T at)
Magnetic energy Coil temperature	0.9 GJ 4.4 K	R = 3.6 m) (0.77 GJ) (3.5 K)
ECRH ICRH NBI	10 MW 3 MW 15 MW	(2.5 MW) (3.0 MW) (23 MW)
(ICRH + ECRH)	3 M W	(1.7 MW)

TABLE	III
-------	-----

Plasma Parameters Achieved

	High $n\tau_E T$	High T _i	High β	Long Pulse]
$T_{e}(0) (\text{keV}) T_{i}(0) (\text{keV}) n_{e}(0) (10^{19} \text{ m}^{-3}) \bar{n}_{e} (10^{19} \text{ m}^{-3}) \tau_{E} (\text{s}) \langle \beta \rangle (\%) W_{p} (\text{kJ}) P_{\text{abs}} (MW) R_{ax} (\text{m}) B (\text{T}) Remarks}$	0.47 0.47 50.0 25.8 0.22 0.74 740 3.3 3.8 2.763 $n\tau_E T = 5.2 \times 10^{19} \text{ m}^{-3} \text{ s keV}$	3.8 5.6 1.6 1.3 0.046 0.80 879 19.1 3.6 2.9	0.43 2.3 2.3 0.008 5.1 91 11.9 3.6 0.425	1.0 1.1 0.57 0.4 0.082 0.027 21 0.33 3.67-3.7 2.75 54 min, 48 s $P_{in} = 0.49$ MW	

[9] Komori et al., Fusion Science and Technology 58.1 (2010).

Large Helical Device (LHD)

The Large Helical Device (LHD) (1998-) is an NFP=10 heliotron (continuous helical winding) that has been used to explore a wide range of 3D physics, including at high- β [9].

In LHD, a range of MHD activity has been observed: •

MHD activity in the Large Helical Device (LHD)

Experimental evidence of both "soft" linear stability limits and "hard" β -limits (core density collapse).

Exploring β -limits in the Large Helical Device (LHD)

Using M3D-C¹, we apply heating to vacuum field calculated from LHD coils:

• Free boundary: MGRID (Biot-Savart) + boundary shape.

a
$$\begin{cases} A_p = 6.6 \\ V_p = 22.3 \text{ m}^3 \\ R_0 = 3.66 \text{ m} \\ a = 0.56 \text{ m} \end{cases}$$

16

Parameters: $S = 8 \cdot 10^7$, $\nu = 5 \cdot 10^{-3}$

[For reference: When $\chi_{\perp} = 22 \text{ m}^2/\text{s}$, 20MW \rightarrow ghs_rate/ κ_{\perp} =0.45]

Effect of increased heating power on β

For fixed χ_{\perp} and $\kappa_{\parallel}/\kappa_{\perp}$, we examine the effect of increased heating power on β :

³,
$$\kappa_{\parallel}/\kappa_{\perp} = 10^{6}$$
, $\kappa_{\perp} = 10^{-4} \rightarrow \chi_{\perp} = 220 \text{ m}^{2}/\text{s}$

17

Core MHD activity associated with m/n=2/1 resonance

Rapid field stochasticisation with heating-driven high m mode activity

Next steps (in collaboration w/ Y. Suzuki):

Next steps and on-going work

How does transport in 3D fields affect the MHD dynamics and nonlinear stability characteristics?

Work towards direct experimental comparison, including understanding LHD core density collapse events.

- Challenges associated with modelling 3D fields

- Exploring β -limits in stellarators with M3D-C¹

• Outlook: Summary and on-going work

• Assessing reduced models as tools for efficient calculation of 3D equilibria

Examining the role of non-resonant modes in the formation of 3D fields

- Under some conditions, NSTX discharges showed flattening of T_e profiles with • increasing beam power [12], together with evidence of enhanced electron transport.
- Sawteeth have been excluded as possible MHD origins for this enhanced lacksquaretransport, since q > 1.
- Understanding the mechanisms by which stochastic (3D) fields form may \bullet improve understanding of these soft β -limits (c.f. on-going work by Jardin et al.).

Nonresonant pressure-driven modes (where $q \neq m/n$):

- Can appear when magnetic shear is reduced when q > 1, even in Mercier- and ballooning-stable equilibria. Have global mode structures, generating substantial plasma displacements that may lead to more efficient
- flattening of pressure gradients.

MHD modes and the formation of 3D fields

FIG. 1 (color online). (a) T_e profiles in 2, 4, and 6 MW NSTX H modes at $t \sim 0.4$ s. The measurement uncertainty is around 25 eV. (b) TRANSP computed χ_e in the same plasmas. Also shown are the χ_i and NCLASS ion thermal diffusivity for the 6 MW case and the measured neon diffusivity. The bands of values represent the 20 ms variability.

What is the role of non-resonant modes in the formation of 3D fields?

Low shear equilibria can be associated with a characteristic spectrum of unstable modes

that can be associated with a characteristic spectrum [13,14]:

Can and how do nonlinear mode interactions affect the formation of 3D fields?

What is the impact on transport in fields generated via these mechanisms?

[13] Wright & Ferraro, Physics of Plasmas 28, 072511 (2021).; [14] Wright et al., Physics of Plasmas 28, 012106 (2021).

• Even without mode-coupling, low-shear linear MHD stability can be dominated by certain moderate/high-n modes

9	10	11	13	14	16	17	19	20	22	-	25	-	-	-	-	-	35	-	-	-	-	Γ	No	n-reso
8	10	11	12	14	15	16	18	19	<mark>20</mark>	22	23	24	26	27	-	30	31	-	34	-	37			
8	10	11	12	13	15	16	17	19	<mark>20</mark>	21	23	24	25	27	<mark>28</mark>	29	31	32	33	35	36		Fu	ndam
8	9	11	12	13	15	16	17	19	<mark>20</mark>	21	<mark>22</mark>	24	25	26	<mark>28</mark>	29	30	32	33	34	36		F	larmo
8	9	11	12	13	15	16	17	19	20	21	22	24	25	26	<mark>28</mark>	29	30	32	33	34	35			
8	9	11	12	13	15	16	17	18	20	21	22	24	25	26	<mark>28</mark>	29	30	32	33	34	35	Γ	R	leson
8	9	11	12	13	15	16	17	18	20	21	22	24	25	26	27	29	30	31	33	34	35		· · · · ·	
г. ⁻ 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27		Fu	ndam
	Toroidal mode number (n)															ŀ	larmc							
																							<u></u>	
		0.0	4			0.06	5		().08			0	.10			0.	' 12			0.14	1		
$\gamma(\tau_A)$																								

Preliminary studies show significant Te evolution

Preliminary nonlinear simulations show significant evolution of the temperature profile (though no collapse in β): What are the implications for transport in these fields?

23

- Challenges associated with modelling 3D fields
- Exploring β -limits in stellarators with M3D-C¹

Outlook: Summary and on-going work

• Assessing reduced models as tools for efficient calculation of 3D equilibria

• Examining the role of non-resonant modes in the formation of 3D fields

Modelling 3D magnetic fields can be challenging:

- Tools to rapidly calculate 3D fields are needed for optimisation and reconstruction. However:
 - How should realistic (e.g., smooth) pressure profiles be represented in equilibrium models?
 - Can the plasma actually reach the predicted equilibrium with heating (i.e., dynamical accessibility)?

We have seen that:

- SPEC is viable as a tool for modelling the nonlinear + non-ideal plasma response to external 3D fields in the weakly nonlinear regime:
 - Exploring SPEC as a tool for modelling internal relaxation events (e.g., helical core states) on NSTX-U.
- With M3D-C¹, we now have first-of-a-kind capability to explore nonlinear MHD in stellarators:
 - Evolution of pressure profiles for self-consistent equilibria, including for non-integrable fields.
 - Understanding core density collapse events in LHD experiments.
- Pressure-driven modes may lead to efficient formation of 3D fields in regions of low shear.
 - What are the implications for transport in these fields?

