Cea

Impact of Boron Powder Injection on Wall Conditioning and Confinement in WEST L-Mode Plasmas

<u>G. Bodner¹, </u>A. Gallo², A. Diallo¹, R. Lunsford¹, P. Moreau², A. Nagy¹, F-P. Pellissier², C. Guillemaut², J.P. Gunn², C. Bourdelle², C. Desgranges², P. Manas², A. Bortolon¹, C.C. Klepper³, E. Tsitrone², E.A. Unterberg³, L. Vermare⁴, and the WEST Team⁵

¹Princeton Plasma Physics Laboratory, Princeton, NJ, USA
²CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France
³Oak Ridge National Laboratory, Oak Ridge, TN, USA
⁴École Polytechnique – LPP, Paris, France
⁵http://west.cea.fr/WESTteam

NSTX-U/Magnetic Fusion Science Meeting March 4th, 2022 Princeton, NJ (Virtual)

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr Princeton Plasma Physics Laboratory - www.pppl.gov

- 1. Educational/Professional Background
- 2. Overview of Boron Powder Injection Experiments in WEST
- 3. Impact of Powder Injection on Wall Conditioning
- 4. Improvements in Confinement from Powder Injection
- 5. Conclusion/Future Directions

Educational Background

3

University of Wisconsin-Madison 🖤

- B.S. in Engineering Physics
- M.S. in Nuclear Engineering and Engineering Physics
- PhD in Nuclear Engineering and Engineering Physics

Professional Experience

- Graduate Research Assistant (2015-2020)
 - Responsible for alignment, calibration, operation, and analysis of PEGASUS TS diagnostic
 - Investigated electron heating during plasmas produced and driven by local helicity injection
- Associate Research Physicist (2020-Present)
 - Wrote data analysis package for the LTX-β HFS TS system
 - Aided in the laser alignment and calibration of ST40 TS system
 - Responsible for operation of WEST IPD and subsequent data analysis

PEGASUS (Madison, WI)

Bodner et al. 2021 Phys. Plasmas. 28 102504

ST40 (Oxfordshire, UK)

LTX-β (Princeton, NJ)

Schmidt et al. 2014 Rev. Sci. Instrum. 85, 11E817

WEST (Cadarache, FR)

M. Gryaznevich et al 2022 Nucl. Fusion 62 042008

- 1. Educational/Professional Background
- 2. Overview of Boron Powder Injection Experiments in WEST
- 3. Impact of Powder Injection on Wall Conditioning
- 4. Improvements in Confinement from Powder Injection
- 5. Conclusion/Future Directions

Tore Supra has been Converted into WEST (<u>W</u> Environment in Steady-state Tokamak) to Support ITER Operation

- Scientific objectives of WEST:
 - Testing of ITER-grade PFUs
 - Investigation of long pulse H-mode and steadystate operation
- WEST is a full-W superconducting tokamak specializing in long pulse operation with LHCD and ICRH
- Long pulse capabilities allow for detailed investigations of potential power exhaust issues in a reactor
 - ITER-like heat flux: 10-20 MW/m²

WEST Configurations and Parameters

I _p (q ₉₅ ~ 2.5)	1 MA
Β _τ	3.7 T
R	2.5 m
а	0.5 m
А	5-6
Max κ	1.35
δ	Up to 0.5
V _p	15 m ³
n _{GW}	1.5x10 ²⁰ m ⁻³
P _{ICRH}	9 MW
P _{LHCD}	7 MW
t _{flattop} (0.8 MA)	1000s

C. Bourdelle et al. 2015 *Nucl. Fusion* **55** 063017 P. Maget and J. Hillairet. WEST Exp. Plan. Meeting (3/22/21) cea

Full-W Environment of WEST

7

ITER-like Plasma Facing Units (PFUs)

E. Tsitrone and the WEST Team. *IO Seminar*. 2020 "Testing and operating ITER-grade PFCs in WEST (TF-W1): Overview of WEST phase 1

Wall Conditioning Needed For Metal-Walled Machines, Alternate Methods Needed for Superconducting Tokamaks

8

- Vessel wall can act as an unpredictable source of fueling and impurities
 - Sputtering of high-Z material into the plasma can degrade confinement¹
- Glow Discharge Boronization (GDB) is a proven method to condition plasma-facing components
 - Needed on WEST to expand operating space²
- Standard GDB techniques require deenergization of the magnetic field coils
 - Not conducive to a superconducting tokamak or steady-state pilot plant
 - Requires toxic/explosive diborane gas

Impact of Boronization on the WEST Operating Space

P. Maget & J. Hillairet et al. WEST Experimental Planning Meeting (3/22/21)

Impurity Powder Droppers (IPDs) Provide Real-Time Wall Conditioning By Dropping Low-Z Powders into Plasma

- Designed by PPPL, installed on: AUG, EAST, W7-X, LHD, DIII-D, and WEST
- IPDs have 4 individual feeders which can each hold 25 g of low-Z powder
- Powder drop rate is controlled using piezo-electric blades
 - The oscillation rate of the blades is proportional to a user-provided drive voltage
 - Drop rate is monitored using a fiber optic coupled flowmeter

C 2 7

Impurity Powder Droppers (IPDs) Provide Real-Time Wall Conditioning By Dropping Low-Z Powders into the Plasma

- Designed by PPPL, installed on: AUG, EAST, W7-X, LHD, DIII-D, and WEST
- IPDs have 4 individual feeders which can each hold 25 g of low-Z powder
- Powder drop rate is controlled using piezo-electric blades
 - The oscillation rate of the blades is proportional to a user-provided drive voltage
 - Drop rate is monitored using a fiber optic coupled flowmeter

Powder Drop During Calibration

A. Nagy et al., 2018 Rev. Sci. Instrum. 89 10K121

cea

IPD Installed on WEST Through Collaboration Between DOE-PPPL and CEA-IRFM

- Objectives for the IPD collaboration:
 - Provide real-time wall conditioning of W PFCs, especially LHCD and ICRH antenna limiters
 - Facilitate H-mode access by limiting the W influx
- WEST allows for evaluation of the IPD in a reactor-relevant environment on long-pulse time scales
- B powder is ablated by the tokamak plasma and then transported around the machine by toroidal flows

IPD Installed on WEST

56830 **B Drop in WEST**

IPD Installed on WEST Through Collaboration Between DOE-PPPL and CEA-IRFM

- Objectives for the IPD collaboration:
 - Provide real-time wall conditioning of W PFCs, especially LHCD and ICRH antenna limiters
 - Facilitate H-mode access by limiting the W influx
- WEST allows for evaluation of the IPD in a reactor-relevant environment on long-pulse time scales
- B powder is ablated by the tokamak plasma and then transported around the machine by toroidal flows

Initial Powder Injection Experiments Used to Determine the Optimal Drop Rate

- B powder was dropped into 10 LSN L-Mode WEST discharges
 - 56915 was reference discharge (no powder dropped)
- Optimal drop rate was found to be 9 mg/s to 17 mg/s
 - Large drop rates (≥ 17 mg/s) were more prone to disruptions
 - Increased input power may permit larger drop rates in the future¹
- Cumulative B dropped: 310 mg
 - About 1.5% of 1 reservoir
 - IPD has 4 reservoirs (25,000 mg/reservoir)

¹Bortolon et al. 2019 Journ. Of Nucl. Instrum. **19** 384-389

Impact of B Powder Injection Observed Primarily in n_e and P_{RAD}

- WEST L-Mode discharges robust to powder injection
 - $I_p = 0.5 \text{ MA}, B_T = 3.7 \text{ T}, P_{LHCD} = 4.5$ $\dot{M}W$, $n_{\rho} = 3.5 \times 10^{19} \text{ m}^{-3}$, $q_{95} = 4.3$
 - Minimal effect on LHCD coupling
- Increase in n_e during initial phase of powder drop, not sustained
 - n_e decreases slightly during I_p flattop despite increased fueling
- Sustained increase in radiated power $(\sim 20\%)$ observed during B drop

Divertor Langmuir Probes Show a Constant Decrease in SOL n_e during B Powder Injection

- Decrease in n_e more evident in the SOL (~50% reduction for 9.2 mg/s of B powder)
 - More evidence of reduced wall recycling
- Small drop in the SOL T_e during the initial drop phase, then signal returns to nominal pre-drop level
- q_{\parallel} at the divertor reduced during powder injection due to decrease in density

Divertor Langmuir Probe T_e, n_e, and q_{\parallel} from 7-13 s + 56915 (No B Injection) -56919 (9.2 mg/s) ∑₀ 20 2.2 2.25 2.3 2.35 n_e [10¹⁹ m⁻³] + 56915 (No B Injection) -56919 (9.2 mg/s) 2.2 2.25 2.3 2.35 q_{//} [MW/m²] 10 🕂 56919 (9.2 mg/s)

2.2 2.25 2.3 2.35 Major Radius [m]

- 1. Educational/Professional Background
- 2. Overview of Boron Powder Injection Experiments in WEST
- 3. Impact of Powder Injection on Wall Conditioning
- 4. Improvements in Confinement from Powder Injection
- 5. Conclusion/Future Directions

- Analysis focused on lower divertor and ICRH antenna limiter due to LSN configuration and limiter position
- Powder injection led to large increase in B-II line intensity and reduction in D_y and low-Z impurity line intensities
- Increase in W-I line intensity at both the lower divertor and ICRH antenna limiter
 - B becomes dominant sputtering mechanism
 - Similar results observed in powder injection experiments on AUG²

Time-Averaging of Visible Spectroscopy Signals Shows Evolution of Spectral Lines Over Several Shots

• Line intensities normalized to edge interferometry channel to account for any n_e variations

Conditioning of the Lower Outer Divertor Improves As More B Powder is Injected

- Increase of pre-drop B-II signal may be evidence of thin-film deposition
- Decrease in pre-drop levels of W-I and O-II are encouraging signs of cumulative wall conditioning

cea

Similar Indications of Improved Conditioning Observed at the ICRH Antenna Limiter

- Increase of pre-drop B-II signal may be evidence of thin-film deposition
- Decrease in pre-drop levels of W-I and O-II are encouraging signs of cumulative wall conditioning

Estimates of Particle Flux Using S/XB Coefficients Confirm Trends From Visible Spectroscopy

¹C.A. Johnson et al., 2019 Nuclear Materials and Energy 20 100579

VUV Line Intensities Suggest B and W May Sputter Into Plasma During Powder Injection

- VUV data only available from the WEST real-time VUV system
 - Single central viewing chord
 - 22-30 nm wavelength range
- B-V and W-45+ line intensities increase during the B drop
 - Decrease in O-IV and N-V
- Difficult to determine radial penetration due to lack of edge T_e and knowledge of charge-state distribution

Sputtering of B and W not Observed in Pre-Drop Phase of Discharges Following B Injection

Evidence of Wall Conditioning Observed in Total Radiated Power

- Pre-drop P_{rad,tot} decreases as more B powder is injected
- Disruptions may remove the deposited low-Z films and degrade the conditioning effect
 - May also produce large outgassing from the walls

Evidence of Wall Conditioning Observed in Total Radiated Power

- Pre-drop *P*_{*rad,tot*} decreases as more B powder is injected
- Disruptions may remove the deposited low-Z films and degrade the conditioning effect
 - May also produce large outgassing from the walls
- Increase in P_{rad} localized to upper edge, near injection site

- 1. Educational/Professional Background
- 2. Overview of Boron Powder Injection Experiments in WEST
- 3. Impact of Powder Injection on Wall Conditioning
- 4. Improvements in Confinement from Powder Injection
- 5. Conclusion/Future Directions

6

27

• W_{MHD} , neutron rate ($\propto T_i$), and T_e increased despite constant I_p and P_{LHCD}

- W_{MHD} increases up to 25% in one case, however discharge disrupts due to rapid increase in n_e and P_{rad}
 - Increase in W_{MHD} and neutron rate not transient, lasts entire drop duration
- Similar increase in confinement have been observed on AUG^{1,2}, W7-X³, and LHD⁴

¹R. Lunsford et al. 2019 *Nucl. Fusion* **59** 126034
²A. Bortolon *et al.* 2019 *Journ. Nucl. Instrum.* **19** 384-389

³R. Lunsford *et al.* 2021 *Phys. Plasmas* **28** 082506 ⁴F. Nespoli *et al.* 2022 *Nat. Phys.*

T_e Profile Broadens Significantly During Powder Injection

- $T_{e,0}$ decreases during initial drop phase, presumably due to n_e rise
- During flat-top phase, $n_{e,0}$ is slightly higher and T_e profile is much broader
 - ECE data unreliable past $T_e(\rho) \sim 0.5$ due to pollution from LHCD
- Core density peaking and/or change in the edge gradient play a role in improved performance

Improvements in Confinement Not Related to L-H Transition

- No evidence of pedestal formation
 - Small rise in n_e during initial injection, but not sustained like increased W_{MHD}
 - Doppler reflectometry shows no formation of deep E_R well
- Plasma inductance slightly increases
 - Previous WEST L-H transitions showed decreases in ℓ_i (from increased bootstrap current)

Previous L-H Transition in WEST

Likely Mechanisms for Turbulence Suppression Are Core Density Peaking And/Or Fuel Dilution

30

- Impurity injection in TEXTOR L-Modes led to the radiative-improved mode¹
 - H-mode like confinement, high radiation fraction, and no ELMs
 - Core density peaking dominant mechanism for turbulence suppression

¹B. Unterberg et al., 2005 Fusion Sci. Technol. 47 187

Likely Mechanisms for Turbulence Suppression Are Core Density Peaking And/Or Fuel Dilution

- Impurity injection in TEXTOR L-Modes led to the radiative-improved mode
 - H-mode like confinement, high radiation fraction, and no ELMs
 - Core density peaking dominant mechanism for turbulence suppression
- N₂ seeding experiments on WEST¹ observed improved performance without core density peaking
 - T_i increases due to main ion dilution which increases Z_{eff} , changes the current diffusion/shear, and suppresses ITG turbulence

N₂ Seeding Experiments in WEST L-Mode Plasmas

¹Yang et al. 2020 Nucl. Fusion **60** 086012

Likely Mechanisms for Turbulence Suppression Are Core Density **Peaking And/Or Fuel Dilution**

- Impurity injection in TEXTOR L-Modes led to the radiative-improved mode
 - H-mode like confinement, high radiation fraction, and no ELMs
 - Core density peaking dominant mechanism for turbulence suppression
- N₂ seeding experiments on WEST¹ observed improved performance without core density peaking
 - T_i increases due to main ion dilution which increases Z_{eff} , changes the current diffusion/shear, and suppresses ITG turbulence
- Current picture is unclear for WEST powder injection discharges
 - Need interpretative modelling

4

Time [s]

Simulations Underway to Identify Mechanisms Behind the Improved Performance

33

- Experimental measurements complemented by fast integrated modelling code, METIS¹
 - METIS combines 0D scaling laws with 1D current diffusion models and 2D equilibria
 - Generates data needed for gyrokinetic modelling
- QuaLiKiz² is a fast quasilinear gyrokinetic transport code used to analyze turbulent transport

1J.F. Artaud *et al.* 2018 *Nucl. Fusion* **58** 105001 ²C. Bourdelle et al., 2015 *Plasma Phys. Control. Fusion* **58** 014036

Heat Flux $(Q_{e,i})$, Particle Flux, Gradient Scale Lengths

Simulations Underway to Identify Mechanisms Behind the Improved Performance

- Experimental measurements complemented by fast integrated modelling code, METIS¹
 - METIS combines 0D scaling laws with 1D current diffusion models and 2D equilibria
 - Generates data needed for gyrokinetic modelling
- QuaLiKiz² is a fast quasilinear gyrokinetic transport code used to analyze turbulent transport

Normalized Electron Flux for WEST Discharges with and w/o N₂ Seeding

Yang et al. 2020 Nucl. Fusion 60 086012

¹J.F. Artaud et al., 2018 *Nucl. Fusion* **58** 105001 ²C. Bourdelle et al., 2015 *Plasma Phys. Control. Fusion* **58** 014036

Empirical Correlations Show Possible Link Between Recycling and Improvements in Stored Energy

 Edge density normalized D_γ signal taken as proxy for the D recycling flux

 As the divertor recycling decreases, W_{MHD} during B injection increases

- Decrease in recycling may lead to additional fuel dilution
 - Further increases Z_{eff}

Decreases in Recycling Dependent on the Powder Drop Rate Rather Than the Cumulative Powder Dropped

- Lowest levels of recycling achieved with large drop rates
 - High drop rates prone to disruption due to rapid increases in n_e
- Minimal changes in recycling with cumulative powder dropped is consistent with time-averaged measurements
 - Recycling only affected during powder injection, not after

Higher Drop Rates Lead to Larger Improvements in Confinement

37

- W_{MHD} , neutron rate, and T_e increase with drop rate
 - Possibly non-linear for neutron rate

• *T_e* profile becomes increasingly broad as drop rate is increased

- Motivates higher drop rates for future experiments
 - *P_{aux}* > 4.5 MW may be required to sustain drop rates > 17 mg/s

- 1. Educational/Professional Background
- 2. Overview of Boron Powder Injection Experiments in WEST
- 3. Impact of Powder Injection on Wall Conditioning
- 4. Improvements in Confinement from Powder Injection
- 5. Conclusion/Future Directions

Boron Powder Injection Has Led to Improvements in Wall Conditioning and Plasma Confinement

- For the most part, B powder injection was non-perturbative to WEST L-Mode discharges
- Visible and VUV spectroscopy measurements show clear reductions in D and low-Z impurity signals during B powder injection
- As more B powder was dropped, pre-drop impurity signal levels and P_{RAD} were reduced
 - Increase in B-II signal over several pulses may be evidence of thin-film deposition
 - Reduction of SOL O⁺ and W particle flux
- Improved confinement observed in several pulses with B powder injection
 - Increase in W_{MHD} may be correlated with the level of recycling
 - High drop rates achieve the lowest levels of recycling and highest improvements in confinement (requires high P_{aux} to avoid disruptions)
- Initial results are very encouraging and prompt further exploitation of the IPD on WEST
 - C6 campaign will feature longer drop durations, higher drop rates, and greater diagnostic availability
 - BN powder will also be used to conduct power exhaust studies with the full ITER-like PFU lower divertor

Future Directions as an RM2

40

- Use IPD to support long-pulse H-mode operation in WEST
- Support PPPL-IRFM collaboration to install RTTS on WEST
 - Pedestal studies in a full-W environment on reactor-relevant time scales
- Support operation of NSTX-U and ST40 TS systems
 - Pedestal scalings at high toroidal field (ST40)
 - Pedestal studies at low collisionality and high bootstrap fraction (NSTX-U)

WEST (Cadarache, FR)

irfm.cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives