

APPLIED PHYSICS AND APPLIED MATHEMATICS WITH MATERIALS SCIENCE & ENGINEERING

Second Stability Access in Neg-D Reactors

A. O. Nelson with C. Paz-Soldan and S. Saarelma

April 11th, 2022 NSTX-U / Magnetic Fusion Science Meeting

Neg-D: L-modes with H-mode like confinement

https://www.iter.org/newsline/166/628

Austin, et. al. PRL (2019)

Neg-D compares well with other no-ELM scenarios

Core:

- High pressure and confinement due to turbulence reduction
- Stability is generally worse

Edge:

- Exhaust integration could be alleviated
- H-mode and ELMs avoided through MHD?

Outline

• Introduction to Negative Triangularity

• H-mode suppression in Neg-D: a case of ballooning instability?

• How does shape impact second stability access?

• Extrapolation of ballooning physics to reactors

H-mode access follows "virtuous cycle"

Neg-D: ballooning modes clamp ∇n_{edge} - stuck in L-mode!

Ballooning mode instability is a function of s and a

• Local shear:

 $\hat{s}(r,\theta) \sim s(r) - \alpha(r) \cos\theta$

- Shear stabilization prop. to \hat{s}^2
- 1st stability region:
 As s increases, max(α) increases
- 2^{nd} stability region: - Requires $\alpha > s$ to achieve $\hat{s} \ll 0$

DIII-D H-modes limited by $n = \infty$ ballooning modes (1/2)

- A slight change in δ_{II} responsible for loss of H-mode on DIII-D
 - correlated with loss of access to the second stability region!

DIII-D H-modes limited by $n = \infty$ **ballooning modes (2/2)**

- Ballooning stability boundaries can be calculated in 1D
 - a function of both the plasma profiles and the equilibrium shape

• At strong shaping, ballooning modes clamp pedestal gradients

Caveats: 1st-stable operation not strictly L-mode

 On DIII-D, C-Mod, ASDEX, JT-60U (and others?), H-mode operation in the 1st stability regime has been reported

04/11/2022

Outline

• Introduction to Negative Triangularity

• H-mode suppression in Neg-D: a case of ballooning instability?

• How does shape impact second stability access?

• Extrapolation of ballooning physics to reactors

11

Goals and methods

- Understand broadly how shape impacts second stability access
 - Will Neg-D reactors still be in L-mode?
 - Are there other alternatives for shape-based H-mode suppression?
- CHEASE used for equilibria generation
- BALOO used for infinite-*n* ballooning calculation
- Profiles from EPED parameterization
- Bootstrap current self-consistently calculated from Sauter definitions

Base equilibria from neg-D reactor study

• Base target:

 $-R_0 = 7 m$

 $-B_0 = 6 T$

 $-\beta_{N} = 2.5$

- κ = 2

- Everything will be scanned....
- Configuration with δ = -0.8 already analyzed with KINX
 - Pedestals in the 1st stable region

Reduced triangularity closes second stability region

Pedestal height reduced to maintain MHD stability

Reduced δ < 0 leads to reduced edge pressure

- Pedestal height is iteratively decreased until maximum stable profile is found
- Critical δ exists for which 2^{nd} stability can be accessed
- Ballooning-limited pedestal height decreases with $\delta < 0$

Details of the kinetic profiles also impact stability

- We can play with: $\mathbf{T/n} \uparrow \rightarrow \mathbf{v} \downarrow \rightarrow \mathbf{Jboot} \uparrow \rightarrow \mathbf{s} \downarrow$
- With enough bootstrap current, access to the second stability region can be achieved even at $\delta \ll 0!$

Large changes in *v*^{*} needed to change access

Why this effect? Triangularity modifies local shear!

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

A.O Nelson - NSTX-U / Magnetic Fusion Science Meeting - 04/11/2022

Increased local shear in bad curv. prevents 2nd stability

- Local shear strong function of geometry
- When peak of shear profile ventures into the bad curv. region, access to 2nd stability is lost!
- This forces a LFS zero-crossing

 -> destabilizing

Decreased aspect ratio enables H-mode at lower δ

Three effects important for stability in δ - ϵ space

- 1.
- Strengthening of B_p on bad curv. side
 High-β gives rise to large Shafranov shift
 - Shortens "bad curv. connection length"
- 2. At low aspect ratio, local shear in bad curv. region is diminished
 - As β increases, LFS local shear decreases
 - Facilitates shear reversal at high enough β
- 3. At low aspect ratio and high q, favorable curvature is enhanced
 - Suppresses unfavorable contribution of B_p to κ_n

Local shear must be *sufficiently* negative for stability

- Increase ϵ at constant B_p , I_p :
 - q₉₅ increases
 - $\delta_{\rm crit}^{\rm crit}$ decreases
 - $\max(\alpha)$ increases
- Increase ϵ at constant q_{95} , I_p :
 - B_T drops
 - $\delta'_{\rm crit}$ increases
 - $\max(\alpha)$ increases
- At low q₉₅, high *ε*, local shear is not low enough!

At low elongation, 2nd stability access fully closes

- At large κ, stability is relatively unaffected
- At small κ , 2nd stability is closed for all δ
- Lower ballooning-limited pedestals at high κ

For stability, squareness cannot be too high or too low

- Medium squareness needed for 2nd stability access
- Still a strong function of δ !
- Similar to old DIII-D experiments

Extreme squareness also modifies bad curv. local shear!

COLUMBIA ENGINEERING

Bonus: NSTX H-mode suppression through Neg-D

Outline

• Introduction to Negative Triangularity

• H-mode suppression in Neg-D: a case of ballooning instability?

• How does shape impact second stability access?

• Extrapolation of ballooning physics to reactors

1st stable region

Database of >1500 random equilibria generated

 Parameters selected from: δ -0.9 0.9 > > 0.1 > 0.9 6 > 1.2 2.2 > κ > -0.1 0.1 > > 2 m > a_{minor} 4.5 m > 4 T B_T 10 T > > 8 MA 20 MA > > 0.5e20 m⁻³ 2e20 m⁻³ > n_{e,ped} > 3e20 m⁻³ 1e20 m⁻³ > > l e,core 2.5 keV 1 keV > > e,ped 3 keV 15 keV > > e,ped 0.07 0.03 > > **b**ed

Simple linear classification can ~predict stability access

• Best LDA predictor (89% accuracy score):

$$\begin{array}{l} x = 15.629 - 0.419 B_{\rm T} - 13.140 \epsilon \\ - 3.096 \kappa - 3.361 \delta + 3.450 \zeta \\ 1 \end{array}$$

- Predicted stable if:
$$\frac{1}{1 + \exp(x)} > 0.5$$

- Using only δ and ϵ , already accuracy of 84%
- Adding collisionally has no strong effect
 - Shape is most important!

Scalings to maximum pedestal height available

• For cases where the maximum edge pressure is limited by ballooning modes, pedestal limit fit by:

 $\begin{aligned} \alpha_{\rm equ,ped} &= C_0 + C_{\kappa}\kappa + C_{\epsilon}\epsilon + C_{\delta}\delta + C_{\zeta}\zeta \\ &+ C_{\rm a}a_{\rm minor}[{\rm m}] + C_{\rm B}B_{\rm T}[{\rm T}] + C_{\rm I}I_{\rm p}[{\rm MA}] \end{aligned}$

- Critical stabilizing factors associated with the pressure gradient, rather than pressure itself
- Scaling available for incorporation in to systems codes, but recommend to run BALOO directly
 - BALOO module added to STEP code

Conclusions: Neg-D reactors robustly suppress H-mode

- Neg-D presents an interesting ELM-free scenario
- H-mode suppression in Neg-D likely set by
 n = ∞ ballooning modes, which are destabilized
 by increased bad curvature local shear
- Stability is a complicated function of shape!
 - Easier access at low aspect ratio
 - Restricted at low elongation
 - Restricted at large and small squareness
- Preliminary scaling laws developed for systems codes

Backup Slides

ELMs suppressed at high power in DIII-D neg-D ($\delta = -0.4$)

COLUMBIA | ENGINEERING

DIII-D NT discharges in L- and H-mode

DIII-D NT profiles in L- and H-mode

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

A.O Nelson - NSTX-U / Magnetic Fusion Science Meeting - 04/11/2022

Arbitrary adjustment of density profile

Saarelma, et. al. PPCF (2021)

Armor H-mode access possible with arbitrary profiles

- At strong -δ, H-mode access blocked by ballooning instability
- With arbitrary profile control, we can reopen 2nd stability access
- Profile adjustments:
 - Steep gradient region limited to Ψ_n = 0.93-0.95
 - Pedestal flattened outside of ψ_n =0.96 to avoid instability
- Is this possible?

Profile gradient dependence on pedestal width

Elongation scans at fixed q_{95}

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

Tests of breaking axisymmetry

