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Plasma rotat ion
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• Plasma confinement in a tokamak is limited by the transport of

energy and particles.

• Radial transport takes place from hot plasma core to cooler plasma

edge.

• A large part of the transport is driven turbulence.

• A good understanding on magnetic instabilities is necessary to know

how to avoid them.

• Plasma rotation has been known to have beneficial effects on both

stability and confinement.



Importance of  Plasma rotat ion
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• Plasma rotation plays a crucial role in
achieving improved confinement and stability
by suppressing turbulence and magneto-
hydrodynamic instabilities1.

• A relation between sheared radial electric field
and poloidal rotation is found to suppress edge
fluctuations and is found to be related to L-H
transition2.

• The study of intrinsic rotation is important
since external momentum on future large
fusion devices like ITER will not be sufficient to
drive large plasma volume.

• The underlying mechanisms of intrinsic rotation
are still not known.

A simulation of turbulence with (A) 
sheared flow and (B) without 
sheared flow.
Turbulent cells in case of sheared 
flow (A) are smaller, indicating 
reduction a reduction in overall 
transport3
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Tokamak Diagnostic Impurity Toroidal 
Velocity 

Nos of 
points Heating

ALCATOR - C 
Mod

X-ray 
CXRS

Ar17+ (3.7 Angstrom)
B5+ (494.467 nm)

60 km/s
50 km/s >8 NBI

Energy bifurcation related to 
rotation reversal, ne fluctuation

ASDEX - U CXRS B5+ (494.467 nm)
C5+ (529.059 nm) 100 km/s 5

16
NBI
NBI

Rotation reversal with deep 
SOC, and increased 

collisionality

DIII – D CXRS C5+ (529.059 nm) 150 km/s >10 NBI &ECRH Role of ITG gradient 

JET X-ray
CXRS

Ar6+ ( nm)
C5+ (529.059 nm)

30 km/s
300 km/s < 12 NBI &ICRH Role of ▽Pi in UT

JT - 60 U CXRS C5+ (529.059 nm) 300 km/s 15 NBI Role of ▽Pi in UT

J – TEXT X-ray
PCX

Ar17+ (3.7 Angstrom)
C (227.09;464.7;529 

nm) 25 km/s >5 Ohmic Role of ne on UT

KSTAR X-ray
CXRS

Ar17+ (3.7 Angstrom)
C5+ (529.059 nm) 50 km/s >8 NBI, ICRH 

&ECRH

Rotation reversal with ECH and 
NLT

TCV CXRS C5+ (529.059 nm) 50 km/s 40 ECRH Rotation reversal with high ne, 
presence of C⏀to sustain UT

TCABR PCX C5+ (529.059 nm) 30 km/s 6 Ohmic Edge rotation effect on GP 
location

TEXTOR CXRS C5+ (529.059 nm) 100 km/s 10 NBI Role of ICRH, ECRH as source,
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Plasma rotat ion  us ing  Doppler  sh i f t  
spectroscopy
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• Optical lenses and fibers are

commercially available.

• A spectrometer with a custom

fiber mount along with low noise

and a fast detector is installed to

capture photoemission.
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�

Image from: Severo, J.H.F., Canal,G.P., Ronchi, G.,et al, ‘Overview of plasma rotation studies on TCABR tokamak’, Plasma Phys. Cont. Fusion 63, 
0795001, 2021.

Components of visible spectroscopy include optics, 
spectrometer and detectors

Image courtesy: Made in POV-Ray by Dave Burke 2006 obtained from Wikipedia

Poloidal direction shown by red arrow
Toroidal direction shown by blue arrow
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• One can see a Doppler shifted and
broadened Gaussian.

𝑉 = !" .$
" . %&' (

𝑑𝜆
𝜆 = 2.43 x 10)*

𝑇
𝑚

• Few neutrals are present in the
tokamak core.

• Neutral are also injected
externally by Neutral Beam
Injection.

Measurement of plasma velocity by utilizing 
photoemission from the impurity ions

Image from: Shukla, G., Shah, K., Chowdhuri, M.B., et al, ’Observation of toroidal rotation reversal in ADITYA-U tokamak’, Nuclear Fusion, 
59(110), 106049, 2019.
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Measurement of plasma velocity by utilizing 
photoemission from the impurity ions

B.A. Grierson / UW Seminar / Feb 2018

Active Photoemission Occurs from 
Three Fundamentally Different Processes

● Beam emission is from a fast 

neutral

— MSE-LP1, BES2, MSE-LS3

Beam
Neutral

+
+Z

Impact
Excitation

Plasma Ions, 
Electrons

-

+
-

+
-

γ

1F. Levinton Phys. Rev. Lett. 63 (1989)
2R. J. Fonck Rev. Sci. Instrum. 61 (1990)
3N.A. Pablant Rev. Sci. Instrum. 81 (2010)

• For charge exchange
reaction, the ions must
receive an electron.

• The neutrals coming from
neutral beam generally
provide this required
electron leading the
receiving ion into excited
state

H + C./ → H/ + C0/
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Measurement of plasma velocity by utilizing 
photoemission from the impurity ions

𝐸 = 𝑄!"𝑛#𝑛$!" + 𝑄%#!𝑛#𝑛$#" + 𝑄!"𝑛&𝑛$#"

Principle of measurement
• For ADITYA-U tokamak,

carbon is chosen for the
study because it remains the
main impurity due to the
graphite toroidal-belt and
poloidal limiter.

• The high-resolution
spectroscopy diagnostic for
the measurement of plasma
rotation will capture PCX line
emission of C'( ion at 529.01
nm.
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Measurement of plasma velocity by utilizing 
photoemission from the impurity ions
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Electron impact excitation
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Measurement of plasma velocity by utilizing 
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Measurement of plasma velocity by utilizing 
photoemission from the impurity ions

Principle of measurement
• For ADITYA-U tokamak,

carbon is chosen for the
study because it remains the
main impurity due to the
graphite toroidal-belt and
poloidal limiter.

• The high-resolution
spectroscopy diagnostic for
the measurement of plasma
rotation will capture PCX line
emission of C'( ion at 529.01
nm.

𝐸 = 𝑄!"𝑛#𝑛$!" + 𝑄%#!𝑛#𝑛$#" + 𝑄!"𝑛&𝑛$#"

Electron impact excitation

Recombination

Charge Exchange

• The last term is of importance to us,
𝐐𝐜𝐱𝐧𝐧𝐧𝐂𝟔" , this term is the thermal
charge exchange occurring due to
neutrals 𝐧𝐧 present in plasma along with
𝐧𝐂𝟔" impurity density.
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Pass ive  Charge  eXchange (PCX)  
spectroscopy  on  ADITYA-U tokamak
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The passive charge exchange line intensity, 𝑰𝒑𝒄𝒙, of the spectral line:
𝐼0!" =

1
23
∑𝑛! 𝑟 𝑛&#4 𝑟 𝜎𝑣 0!" R. Dey et al

4

Aditya tokamak plasma along radial direction. The solid red 
line named ‘Total’ in the graph is obtained when all the pro-
cesses mentioned inside graph are involved. It is observed 
that the maximum magnitude of neutral hydrogen density is 
~3  ×  109 cm−3 at ρ  =  0.92, and it is ~10 times higher than that 
at ρ  =  0.5 (Te ~ 180 eV) for the present range of plasma param-
eters. The molecular hydrogen ion and molecular hydrogen 
dissociation processes effectively take part in the penetration 
of neutral hydrogen atom into the plasma. Whereas, the charge 
exchange process give ~20–30% contrib ution upto ρ  =  0.4. 
This is because, the edge temperature (Te,a) for Aditya tokamak 
is low (10–12 eV) and in this temper ature range these reaction 
rate coef!cients are very small. The re"ection, which is one of 
the plasma material interaction processes, also gives similar 
contribution as illustrated in !gure  4. It is worth mentioning 
that in case of full recycling, the atoms which are not re"ected 
are adsorbed instantaneously, recombine with another atom and 
desorbed as the molecules. Hence, the recycling coef!cient R 
in terms of desorption, adsorption and re"ection can be given as

= =P R P P1 – 1 – – ,d r a       

where Pr is the re"ection probability or yield due to re"ec-
tion, Pa is the adsorption coef!cient and Pd is the desorption 
coef!cient. The dash-dotted line shows that the radial neutral 
hydrogen density pro!le by switching off the re"ection input 
while solid line contains the contribution from the re"ection 
[26]. It is also noticed that another plasma material interaction 
process, i.e. physical sputtering, does not contribute much for 
the present range of parameters. Since the graphite tiles are sat-
urated with the hydrogen, we have included only sputtering of 
hydrogen by hydrogen (YH→H) and carbon (YC→H). Sputtered 
particles are being ionized when they enter into the plasma 
depending upon the temperature pro!le. Figure  5 compares 
the re"ection yield and sputtering yield. The !gure  clearly 
shows that the yield of re"ection process is ~0.22 at 100 eV 
while the sputtering yield is ~0.03. There exists a possibility 
of carbon particles to be sputtered i.e. YC→C and YH→C and 

enter inside the plasma region, which will affect the edge 
plasma though the radiation loss. However, they are not con-
sidered in the present simulation. Also, chemical sputtering is 
not included in the present study which might play important 
role in molecular or atomic hydrogen production.

Figure 6 shows the simulated Hα spectrum evaluated from 
DEGAS2 code along with the experimental spectrum. A sim-
ulated spectrum was generated using multi-Gaussian !tting 
technique by including various physical processes, such as dis-
sociation, charge exchange, re"ection and physical sputtering. 
Among them contribution from sputtering was found to be neg-
ligible in the Hα spectrum and hence is not included in !gure 6. 
The experimental Hα spectrum has been recorded using a space- 
and time- resolved visible spectroscopy system installed on the 
Aditya tokamak [27]. It has been measured with 50 µm spectro-
meter entrance slit width and the corre sponding instrumental 
spectral resolution in term of full width at half maxima (FWHM) 
is 0.023 nm. The data presented here are recorded along a chord 
closely passing through the plasma center. The normalised Hα 
spectrum is !tted to match for its width only and not for its 
magnitude. The experimental spectrum normalised by its peak 
count. First, the energy of dissociative atoms in the simulations 
are iterated to match the broadening of experimental spectrum 
i.e. experimental FWHM (∆λexpt.) and then the peak of the 
simulated spectrum is normalised to the experimental peak. It 

Figure 4. The neutral hydrogen density pro!le as evaluated from 
DEGAS2 code. The solid line represents the total H density. The 
dashed line represents the contribution from dissociation process. 
The dash-dotted line represents the H density without re"ection 
process. The dotted line represents the H density without charge-
exchange process.

Figure 5. Yield (Y ) of re"ection and sputtering processes as a 
function of the incident projectile.

Figure 6. Normalised simulated Hα spectrum from DEGAS2 
along with the experimental data. Solid line represents the total 
normalized spectrum. The dashed line with open circle represents 
the contribution from charge exchange process. The dash-dot line 
represents the contribution from re"ection process. The dashed 
line with solid circle represents the contribution from dissociation 
processes. The solid circles are the experimental data.

Nucl. Fusion 57 (2017) 086003

Image from: Dey, R., Ghosh, J., Chowdhuri, M.B., et al., ‘Investigation of neutral particle dynamics in Aditya tokamak plasma with DEGAS2 code’, 
Nuclear Fusion 57, 086003, 2017.

Passive emission using simulated neutral and 
impurity density profile for ADITYA-U tokamak
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• The passive charge 
exchange line intensity, 
𝑰𝒑𝒄𝒙, of the spectral line:

𝐼0!" =
1
23
∑𝑛! 𝑟 𝑛&#4 𝑟 𝜎𝑣 0!"

• e-impact excitation is less 
than 10% in the edge 
region4.

Passive emission using simulated neutral and 
impurity density profile for ADITYA-U tokamak

4 Shukla, G., Chowdhuri, M.B., Shah, K., et al., ’Plasma rotation measurement using UV and visible spectroscopy on ADITYA-U tokamak’,  Review of 
Scientific Instruments 89, 10D132, 2018.
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• Upgraded set up was
installed in 2019.

• Total 7 lines of sights
cover plasma minor
radius.

• Increase the radial
coverage upto 0.24 m
of plasma minor
radius5.

Collection optics of visible PCX spectroscopy on 
ADITYA-U consists of a re-entrant viewport for toroidal 

velocity measurement

5 Shukla, G., Shah, K., Chowdhuri, M., et al. ‘Impurity toroidal rotation profile measurement using upgraded high resolution visible spectroscopic     
diagnostic on ADITYA-U tokamak’, Review of Scientific Instruments, 92, 063517, 2021.
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• Poloidal rotation is measured using C2+ line
emission at 464.74 nm.

• Four LoSs cover the plasma minor radius
from 0.115m to 0.215m6.

• Dispersion of the system is 0.01446 nm/px

Collection optics for poloidal velocity measurement is 
installed on top port

6 Shukla, G., Chowdhuri, M., Shah, K., et al, ‘Poloidal Rotation and Edge Ion Temperature Measurements Using Spectroscopy Diagnostic on Aditya-U’ 
Tokamak. Atoms, 7(3), 93, 2019.
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Important aspect of Doppler shift  
measurement is unshifted wavelength 

• Both the LoSs look at the same
radial location

• Red and blue-shifted spectral
lines are observed
simultaneously.

• The average gives the unshifted
reference wavelength7.

7 Shukla, G., Shah, K., Chowdhuri, M.B., et al, ’Observation of toroidal rotation reversal in ADITYA-U tokamak’, Nuclear Fusion, 59(110), 106049, 2019.
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Ident i f icat ion of  the nature of  Intr insic  
plasma rotat ion on ADITYA-U tokamak



ADITYA tokamak
Main plasma parameters ADITYA-U Tokamak

Major  radius, Minor radius 0.75 m, 0.25 m resp.

Electron density 1 – 4 ×1019 m-3

Electron temperature 400-700 eV

Toroidal Magnetic field 0.75-1.5 T

Plasma current ~150 kA

Plasma duration ~200 ms (repeatable)

• ADITYA8 is a medium size tokamak located at IPR, India.

• The maximum toroidal field is = 1.2 T and has 20 TF coils

• During experiments, Hydrogen Plasma is produced 

• ICRH heating of 20 - 40 MHz and 200 kW

• ECRH heating of 28 GHz and 200 kW

• Gas puffing  of  Ne, Ar impurities

• ADITYA is now upgraded to ADITYA-U9 and is  operational since 

winter 2017
8 Tanna, R. L., et al., ‘Overview of recent experimental results from the Aditya tokamak’, Nuclear Fusion, 57, 102008, 2017. 
9 Ghosh, J., et al.,’ Upgrade of ADITYA Tokamak with Limiter Configuration to ADITYA Upgrade Tokamak with Divertor Configuration’, 26th IAEA-FEC 
proceedings, 2016. 
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• (a) Space resolved spectrum of

𝐶'( corresponding to various

LoSs covering plasma radius

from ~ 0 cm to 24 cm of plasma

radius,

• (b) total counts for each LoS and

spline fitted line on data points10.

Space resolved spectra of  the measured C5+ 

impuri ty  passive charge exchange l ine 
emission

10 Shukla, G., Shah, K., Chowdhuri, M., et al., ‘Impurity toroidal rotation profile measurement using upgraded high resolution visible spectroscopic     
diagnostic on ADITYA-U tokamak’, Review of Scientific Instruments, 92, 063517, 2021.
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• The maximum line averaged electron density during the discharge is
~ 𝟏. 𝟓 − 𝟐 𝐱 𝟏𝟎𝟏𝟗𝒎7𝟑.

• The direction of rotation is similar to those reported from other tokamaks.

Toroidal  rotat ion on ADITYA-U shows 
counter-current  rotat ion in  core
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Spatial profile of carbon ion poloidal rotation velocity 
along with error bars for Aditya-U tokamak

• Radial profile of the carbon ion poloidal rotation velocity (km/s) along 
with the error bars for Aditya-U tokamak.

• Maximum poloidal velocity of ~ 2.5 km/s is measured near edge region.
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• Er is estimated using the force balance equation, the poloidal velocity
measurement is also required.

𝐸1 =
23
456 + 𝑉7𝐵8 − 𝑉8𝐵7

• The value of radial electric field is maximum at ~ 0.20 m with ~ 4.5 kV/m11. 

Est imat ion of  Radial  electr ic  f ie ld  from 
measured rotat ion veloci t ies

11 Shukla, G., Shah, K., Chowdhuri, M., et al. ‘Impurity toroidal rotation profile measurement using upgraded high resolution visible spectroscopic     
diagnostic on ADITYA-U tokamak’, Review of Scientific Instruments, 92, 063517, 2021.
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Toroidal  rotat ion in  h igh density  Ohmic 
d ischarges show change in d irect ion from CO 

to CTR

Image from: Shukla, G., Shah, K., Chowdhuri, M.B., et al, ’Observation of toroidal rotation reversal in ADITYA-U tokamak’, Nuclear Fusion, 59(110),     
106049, 2019.

Core rotation velocity - 20 km/s 𝟐. 𝟓 𝐱 𝟏𝟎𝟏𝟗𝒎7𝟑

Core rotation velocity 15 km/s 𝟒. 𝟓 𝐱 𝟏𝟎𝟏𝟗𝒎7𝟑
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Rotat ion  reversal  and  change in  conf inement  
reg ime a longwi th col l is ional i ty  on  ADITY—U 

• A possible change in the
confinement regime beyond critical
density of ~ 3 x 1019 𝑚−3 in ADITYA-U
tokamak.

• Central toroidal rotation velocity as a
function of effective collisionality given
by

𝜈+,, = 0.1 𝑅 𝑍+,,𝑛+/𝑇+-
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Invest igat ing nature of  rotat ion by al ter ing 
plasma density  dur ing Ne GPI  for  IOC 

experiments

Ne GPI SXR

Isat (A) Rise in ne, edge

Rise in ne, Te

Image from: Shukla, G., Shah, K., Chowdhuri, M.B., et al, ’Observation of toroidal rotation reversal in ADITYA-U tokamak’, Nuclear Fusion, 59(110),     
106049, 2019.
Image from” Chowdhuri, M.B., Ghosh, J, et al., ’Neon seeded radiative improved mode in ADITYA-U tokamak’, IAEA-FEC, 2018.
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U T prof i le  in  ADITYA-U shows opposite 
d irect ion in  both edge and core veloci t ies 

• Core plasma and edge plasma rotation are in opposite directions.
• Rotation reversal can be explained by residual stress.
• Role of edge dynamics is investigated.
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Rotat ion prof i le  seems to be inf luenced by 
edge plasma parameters

• Since fluctuation induced,

residual stress is known to

play role in plasma rotation,

we turn our attention to

examine residual stress, for

this radial toroidal

momentum transport

equation is given as.

𝛤∅ 𝑟 = −𝜒∅
𝜕𝑢∅
𝜕𝑟

+ 𝑉∅𝑢∅ + 𝐶∅𝑣?@
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• The residual stress can be

understood as momentum

flux which is driven by

gradient of plasma density,

temperature, and pressure

etc.
• No change in the frequency

amplitude spectrum.

Edge parameters are invest igated to 
establ ish possible momentum source
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Rotat ion prof i le  seems to be inf luenced by 
edge plasma parameters

• Since fluctuation induced,
residual stress is known to
play role in plasma rotation.

• Here C∅ is estimated by
assuming a constant
momentum diffusivity over
plasma minor radius and by
neglecting convective term,

• C∅ is estimated as
C∅ =

1
:&'
∇u∅χ∅.

𝛤∅ 𝑟 = −𝜒∅
𝜕𝑢∅
𝜕𝑟

+ 𝑉∅𝑢∅ + 𝐶∅𝑣?@

Diffusion term

Convective term



drgauravshukla@gmail.com Research seminar NSTX-U 19 April 2022

• Toroidal rotation profile show opposite direction rotation towards the edge.

• Profile of 𝐂Ф, residual stress generated by assuming 𝛘∅ = 𝟏. 𝟐 𝐦𝟐/𝐬.

• The 𝐂∅ profile is relatively flat compared case of rotation reversal.

Rotat ion reversals show gradient  in  residual  
stress from edge to core region
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• A shear in radial electric
field is present in region
~ 0.15m towards plasma
edge whereas its
gradient is relatively
constant before reversal
towards the edge region.

• The shear in radial
electric field when
correlated with C∅ radial
profile may justify
change in 𝐂∅ along
plasma minor radius.

Rotat ion reversals is  accompanied by shear 
in  radial  electr ic  f ie ld
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Rotat ion reversals is  accompanied by shear 
in  radial  electr ic  f ie ld

• A sheared radial
electric field is
observed in case of
rotation reversal.

• Change in 𝐂Ф during
reversal.

• Shear in Er may lead to E x B 
shear.

• E x B shear maybe responsible for 
rotation reversal. 
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To conclude
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• Intrinsic toroidal rotation is found to be ~ 25 km/s with core rotation

in counter current direction in typical discharges of ADITYA-U

tokamak.

• The edge poloidal rotation in typical discharges of ADITYA-U

tokamak is observed to be ~ 4 km/s.

• The Er in the mid radius section has been found to be ~ 5 kV/m.

• Toroidal rotation reversal has been triggered by increasing the

plasma density.

• Transition in confinement regime and collisionality is observed with

threshold density of rotation reversal.
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• Incase of ADITYA-U tokamak no change in fluctuation of ion

saturation current is measured by Langmuir probe.

• Estimation of radial electric field from toroidal and poloidal rotation

velocities show a sharp gradient in the core and towards edge

region.

• ▽Er corresponds with a gradient in residual stress term during

rotation reversal.

• The presence of radial electric field shear indicates a sheared 𝑬 𝐱 𝑩

rotation which could possible be linked with rotation reversal in

ADITYA-U tokamak.
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An important conclusion is to have identified role of radial electric field 

shear  in toroidal rotation reversal in ADITYA-U tokamak. 
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Thank you
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