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Motivations

• Ion Cyclotron Radio Frequency (ICRF) antennas are planned to play roles in future fusion experiments 
including ITER and SPARC

• Goal of this talk: to elucidate the basic physics underlying RF sheath—plasma interactions and to 
develop the tools necessary to predict and model RF sheath rectification and the generation of 
impurities due to ICRF antennas 

• It has been observed that ICRF power leads to the generation of impurities via RF sheath rectification;  
data is available from previous and ongoing experiments: C-Mod and WEST 

• First principle understanding of RF sheath rectification and its implications are topics of active research



Motivations

S. J. Wukitch, M. L. Garrett, R. Ochoukov, et al. Phys. Plasmas 20, 056117 (2013); https://doi.org/10.1063/1.4803882 

ICRF power leads to sheath rectification Rectified sheath voltages lead to sputtering

Measured sheath voltage rectification 
due to ICRF antenna in C-Mod Molybdenum sputtering yield



Motivations

RF actuator modeling should include

• Nonlocal kinetic response in core plasma 
• Flux surface geometry 
• Toroidal/poloidal Fourier decomposition 
• Nonlocal Landau/Cyclotron damping

• High-fidelity modeling of realistic antenna/wall geometry 
• Local FEM elements  
• CAD antenna geometry 
• Assumes cold plasma in SOL

• Incorporation of nonlinear RF sheath boundary physics

WEST ICRH

Petra-M 
FEM code

Toric 
Kinetic solver 
in flux geometry
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RF sheath rectification

V0 =
Te
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The total current normal to the sheath takes the form

Requiring the DC current to vanish yields the rectified voltage 

The Fourier component of the current density corresponding 
with the RF frequency is approximately given by

where  is a nonlinear complex RF sheath admittance.ysh
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Nonlinear RF sheath admittance
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Real and imaginary parts of nonlinear sheath 
admittance for varying sheath potential

ψsh = eVsh/Te

̂ysh =
Te

e2necs
yshJn = yshVsh

RF sheath admittance relates the local 
values of the oscillating total current  
(particle + displacement) normal to the 

boundary and the RF sheath potential 

Jn

Vsh

JR Myra, Phys. Plasmas 24, 072507 (2017)



RF sheath boundary conditions

⃗E t = − ∇tVsh

On the sheath boundaries, the tangential components of the electric field satisfy

In frequency space, Maxwell’s equation (c.g.s. units) imply the wave equation

The complex sheath potential  is locally constrained by the RF sheath boundary conditionVsh

•   : the sheath admittance, a nonlinear function of the absolute value of the local sheath potential , the RF frequency , 
and the local boundary plasma parameters (i.e., ).
ysh |Vsh | ω

ysh = ysh( |Vsh | , ω, ⃗B 0, ne, Te)

(  is the unit vector pointing out of the plasma)̂n

∇ × ∇ × ⃗E − k2
0 ϵ ⋅ ⃗E = ik0

4π
c

⃗jext

yshVsh = Jn =
ω

4πi
̂n ⋅ ϵ ⋅ ⃗E

•   : the total RF current density (particle + displacement) normal to the boundaryJn



Consequences of linearity
Maxwell’s equations provide a linear relationship between the boundary values of the RF sheath potential and the 
total RF current density normal to the boundary

Jn( ⃗rt) = ∫∂𝒟
d2r′ t yp( ⃗rt, ⃗r′ t)Vsh( ⃗r′ t) + Jext

n ( ⃗rt)

• the integral kernel  is termed the plasma wave admittance 
• depends only on zeroth-order plasma and geometry

yp( ⃗rt, ⃗r′ t)

• the source  is the total RF current density normal to the boundary when conducting walls are imposed 
• scales linearly with the external antenna current

Jext
n ( ⃗rt)

Both  and  can be obtained in arbitrary geometry using a FEM code. 
Analytic solutions exist in special cases.

yp( ⃗rt, ⃗r′ t) Jext
n ( ⃗rt)



Jn( ⃗rt) = ∫∂𝒟
d2r′ t yp( ⃗rt, ⃗r′ t)Vsh( ⃗r′ t) + Jext

n ( ⃗rt) .

Jn( ⃗rt) = ysh( |Vsh( ⃗rt) | )Vsh( ⃗rt) .

ysh( |Vsh( ⃗rt) | )Vsh( ⃗rt) − ∫∂𝒟
d2r′ t yp( ⃗rt, ⃗r′ t)Vsh( ⃗r′ t) = Jext

n ( ⃗rt) .

• Maxwell’s equations yield the linear, nonlocal condition

• The RF sheath boundary condition gives nonlinear, local condition

• Eliminating the total current  gives a nonlinear integral equation for  on the boundaryJn Vsh

Self-consistent equation for the sheath potential

(1)

(2)
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3D implementation in planar geometry

Radiation condition 
for x → ∞

Antenna

RF sheath

x

x = 0

x = xa

y

z

ysh( |Vsh( ⃗rt) | )Vsh( ⃗rt) − ∫∂𝒟
d2r′ t yp( ⃗rt − ⃗r′ t)Vsh( ⃗r′ t) = Jext

n ( ⃗rt),

In planar geometry, the integral kernel simplifies to a convolution

which yields a straight-forward fixed point iteration scheme 
leveraging fast Fourier transforms.

The Fourier transformed plasma wave admittance  is 
obtained analytically from Maxwell’s equations.

ỹp( ⃗k t)



3D implementation in planar geometry

Antenna

RF sheath

x

x = 0

x = xa

y

z

Antenna surface current on the plane x = xaRF sheath potential magnitude on plane x = 0

e |Vsh | /Te Kext /Kmax

ne = 1 × 1018 m−3

Bx = 0.3 T By = 0 T Bz = 2 T

f = 80 MHzTe = 15 eV

(scaled to maximum)

Kmax = 0.5 kA /m
xa = 3 cm

Iant = 145 A



Kmax = 0.1 kA /m Kmax = 0.3 kA /m Kmax = 0.5 kA /m

Kmax = 0.9 kA /mKmax = 0.7 kA /m Kmax > 1.1 kA /m

Does not converge

3D implementation in planar geometry

Fixed point iteration 
does not converge for 
Kmax > 1.1 kA/m

Solutions exhibit 
oscillatory behavior before 
going numerically unstable

Sheath potential magnitudes for varying antenna current



3D implementation in planar geometry
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Fixed point iteration convergence is very slow when entering 
the nonlinear regime and exhibits clear converge issues for 
large antenna currents

Newton-Ralphson method is prohibitively expensive, as each 
iteration requires the inversion of a large, dense Jacobian matrix 
with ~ O(N^4) elements

Are converged solutions unique? Bounded? Stable?

Analytic results lead to insight regarding these questions
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Analytic solution for plane wave sourcing

(ysh( | Ṽsh | ) − ỹp(kz))Ṽsh = J̃ext
n

⃗jext(x, y, z) = ̂yδ(x − xa)Kexteikzz

Vsh(y, z) = ṼsheikzzJext
n (y, z) = J̃ext

n eikzz

ysh( |Vsh( ⃗rt) | )Vsh( ⃗rt) − ∫∂𝒟
d2r′ t yp( ⃗rt − ⃗r′ t)Vsh( ⃗r′ t) = Jext

n ( ⃗rt)

For a plane wave surface current imposed at x = xa

Linearity and symmetry imply at x = 0

where  and  are complex constants.J̃ext
n Ṽsh

The nonlinear integral equation

Reduces to a nonlinear algebraic equation for Ṽsh

ℜ(Kext)

Antenna surface current on the plane x = xa

(scaled to maximum)Antenna

RF sheath
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Analytic result reveals all solutions for varying antenna current
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One solution
Kext =

|ysh( | Ṽsh | ) − ỹp(kz) | | Ṽsh |

| J̃ext
n /Kext |

| J̃ext
n | = |ysh( | Ṽsh | ) − ỹp(kz) | | Ṽsh |

Antenna surface current

Rescaling the nonlinear equation

gives

ne = 1 × 1018 m−3

kz = 10.8 m−1

Te = 15 eV

By = 0 T

f = 80 MHz

Bx = 0.3 T Bz = 2 T



Three solutions for a fixed antenna current

ne = 1 × 1018 m−3

Ky = 2 kA/m

kz = 10.8 m−1

Te = 15 eV

By = 0 T

f = 80 MHz

Root #
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e |Vsh | /Te

For these parameters and geometry, three solutions exist that are consistent 
with Maxwell’s equations and the RF sheath boundary condition
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RF sheath instability in multi-valued cases

For slow time variation of the external sourcing, a nonlinear equation 
describing the evolution of the sheath potential is obtained as

d
dts

Vsh =
Jext

n − (ysh( |Vsh | ) − ỹp(kz))Vsh

i ∂
∂ω (ysh( |Vsh | ) − ỹp(kz))

,

The equilibrium solutions to this equation are the self-consistent 
solutions to the RF sheath-plasma problem.

Not all equilibrium solutions are stable to small perturbations.
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Hysteresis formation for slow time variation

d
dts

Vsh =
Jext

n − (ysh( |Vsh | ) − ỹp(kz))Vsh

i ∂
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The nonlinear equation

is evolved with an external current that is slowly 
ramped up and down in time.

Behavior of the system is different for 
increasing current vs. decreasing current.

RF sheath instability leads to jumping from 
branch to branch.



Lessons from the analysis of an unbounded half-space

• Multiple solutions can exist to the self-consistent RF sheath plasma problem 

• An instability is always associated with the occurrence of multiple solutions

• Complicated function topology is the culprit behind non-convergence of fixed-point 
iterations in three-dimensional sheath implementation

• Hysteresis behavior in the time domain is a generic consequence of the RF sheath instability
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Analytic solution in a bounded domain 

[J0
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y00
p y0L
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p yLL

p ] [V0
sh
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[J0
n

JL
n ] = [ysh( |V0

sh | ) 0
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Maxwell’s equations imply the nonlocal linear relation

The RF sheath boundary condition gives the local nonlinear relation

[
ysh( |V0

sh | ) − y00
p −y0L

p

−yL0
p ysh( |VL

sh | ) − yLL
p ] [V0

sh

VL
sh] = [Jcw,0

n /Kext

Jcw,L
n /Kext] Kext,

Eliminating  and  leads to the nonlinear matrix equation J0
n JL

n



K0( |V0
sh | , |VL

sh | ) =
(y0

sh − y00
p )(yL

sh − yLL
p ) − y0L

p yL0
p

(yL
sh − yLL

p )Jcw,0
n /Kext + y0L

p Jcw,L
n /Kext

|V0
sh | ,

The functions  and  are thought of as surfaces over the two-dimensional domain spanned by  and .  
The intersection of these two surfaces gives all the allowable values for the triplets  .

K0 KL |V0
sh | |VL

sh |
( |V0

sh | , |VL
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p
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|VL
sh | ,

K0( |V0
sh | , |VL

sh | ) = KL( |V0
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and note that solutions satisfy

To view the solution space of the nonlinear matrix equation

[
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Analytic solution in a bounded domain 

define the two functions

K0( |V0
sh| , |VL

sh| )

K
L ( |V 0

sh | , |V L
sh | )

The surface intersection denoted by 
the red curve gives all possible 

solution triples ( |V0
sh | , |VL

sh | , Kext)



Analytic result shows all solutions for varying antenna current
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∂K0

∂ψ0

∂KL

∂ψL
−

∂K0

∂ψL

∂KL

∂ψ0
< 0

Intermediate branch composed of symmetric 
solutions is unstable to any asymmetric perturbation

d
dts [ψ0

sh

ψ L
sh] = i

∂
∂ω [

̂y0
sh − ̂y00

p − ̂y0L
p

− ̂yL0
p ̂yL

sh − ̂yLL
p ]

−1

⋅ [Jcw,0
n

Jcw,L
n ] − [

̂y0
sh − ̂y00

p − ̂y0L
p

− ̂yL0
p ̂yL

sh − ̂yLL
p ] [ψ0

sh

ψ L
sh] .

For slow time variation of the external current

Analyzing the linear stability of equilibrium 
solutions leads to the instability criterion:

RF sheath instability in multi-valued cases

Implication: spontaneous symmetry breaking



Spontaneous symmetry breaking

Slowly increasing and decreasing the antenna 
current leads to the time evolution shown

Note that the symmetry of the problem is 
spontaneously broken by the RF sheath instability

Clear hysteresis behavior is observed



Directions for future research

NSTX-U HHFW Antenna in Petra-M

• Incorporation of nonlinear RF sheath boundaries 
in high-fidelity 3D simulations (i.e., Petra-M)

• Development of ‘smart’ iterative solvers that 
anticipate nonlinear sheath effects

• Coupling to secondary emission model to 
evaluate impurity production due to RF sheath 
rectification 

• Coupling to transport model to evaluate the 
transport of impurities



Conclusions

• Analytical solutions exist for two classes of one-dimensional problems (unbounded domain/ 
bounded domain). Precise conditions for the appearance of multiple roots are obtained.

• Multiple roots and sheath plasma resonance are linked to the presence of an instability that 
alleviates the ambiguity in the frequency domain and gives a physical mechanism for hysteresis.

• Non-intuitive spontaneous symmetry breaking is demonstrated in an otherwise completely 
symmetric problem, highlighting the nontrivial features of the physics underpinning RF sheath—
plasma interactions. 

• Attempts to model and implement nonlinear RF sheaths in numerical codes should be aware of 
these nonlinearities and the exotic features they present.


