Characterization of argon impurity transport and measurement of toroidal plasma rotation using spectroscopic techniques in Aditya-U Ohmic plasma

Kajal Shah*

******Pandit Deendayal Energy University (PDEU), Gandhinagar, Gujarat, India*

**Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat India*

Seminar talk at Princeton Plasma Physics Laboratory, Princeton, USA 27.04.2022

Outline

- Introduction
	- Importance of Impurity transport and intrinsic rotation in tokamak (ITER relevance, major challenges)
	- Aditya-U tokamak good candidate for the above studies.
- Development of tangential X-ray Crystal Spectrometer (XCS)
	- Basics of crystal spectroscopy
	- Spectrometer parameters design and fabrication of the system
	- Testing of the entire system in lab and alignment
- Characterization of argon impurity transport in ohmic discharges
	- Turbulent transport behaviour of argon
	- Input XCS
- Results of plasma rotation in ohmic discharges
	- Rotation direction, rotation reversal, isotopic effect on rotation
	- Input for XCS
- Summary

Importance of plasma rotation in a Tokamak

A fusion relevant tokamak plasma must fulfill:

- High energy and particle confinement (Lawson criterion).
- The confinement must also be stable. (Instability control).
- Impurity optimization.

A fast rotating plasma helps in achieving the above through…

The tokamak: most advanced toroidal confinement system

PC: https://pure.tue.nl/ws/files/2338508/200612332.pdf, Shawn Zamperini, UT-Knoxville.

How a large plasma rotation can be driven?

facilitate

Distance from inner target (m)

Impurity

Removal

Importance of plasma rotation in a Tokamak

The original and most studied external rotation drive method is from Neutral Beam Injection

Limitations of NBI:

- large machine sizes,
- high densities and
- the limitations of beam current

may limit usage of this drive mechanism in future reactor-grade devices

Intrinsic (spontaneous) plasma rotation without external momentum input will be beneficial for achieving more economical reactor operation

Intrinsic plasma rotation has been widely observed in tokamaks

- \checkmark However, the Intrinsic (spontaneous) plasma rotation are not well understood
- \checkmark Reliable models are under development for predicting intrinsic rotation in large fusion devices
- \checkmark LOC-SOC plasmas show rich phenomenology and will be useful to asses
	- Mechanisms of rotation reversal
	- Effect of turbulence on rotations
	- MHD effect
	- Coupling of core-edge physics

Why study impurity transport in tokamak?

Efficient fusion reactors should have clean plasma: We do not want Impurities!

Because:

Radiate energy (energy confinement time $\tau_e \downarrow$)

Impurity accumulation in the core Dilute the fuel $(N \downarrow)$

At the same time: We do want Impurities! Because:

To radiate energy at plasma periphery to reduce the heat flux on PFCs

Impurity (Nitrogen etc.) seeding helps in confinement improvement

Impurities (Ar, Ne etc.) required for Diagnostics

5

Hence knowledge of impurity behaviour in tokamak is essential!

- How the seeded or wall and PFC generated impurity transport to tokamak interior?
- In case of seeding and diagnostic, the appropriate injection quantities?
- How they affect the plasma rotation?
- How their transport depend on their charge and mass? etc.

No single model describes the behaviour of all relevant impurities

Rotation and Impurity studies in Aditya-U Tokamak

In this presentation: Results from Circular Plasmas with Toroidal Limiter Only

Rotation and Impurity studies in Aditya-U Tokamak

Discharges in LOC – SOC Regimes

simultaneous observation of Ar16+ (Xray) and C 5+ (Visible CX) possible from plasma core

In this presentation: Results from Circular Plasmas with Toroidal Limiter Only

Development of Tangential X-ray Crystal Spectrometer (XCS) to measure toroidal rotation and ion temperature in ADITYA-U

- First XCS on Indian tokamaks
- Designed, fabricated and installed from scratch
- A great learning experience

Typical XCS schematic used in Tokamak

Major Considerations

‒ For single chord measurement

Cylindrical Crystal

Crystal radius of curvature (R_C) = diameter of the Rowland circle

Choice of Crystal

• Ar or Ne line emission

Factors affecting resolving power of XCS

- Crystal rocking curve
- Johann error
- pixel width of detector
- Arrangement of the detector plane

Crystal Parameters

- Crystal size –length (l_c) ,height (h_c)
- 2d spacing, R_c , Bragg angle (θ_b)

Line of sight

• Angle between LoS and Magnetic axis 9

Selection of line emission $n_e(\rho)$ $T_e(\rho)$ **S T** Tokamak Geometry **A** $n_{z,i}(r)$ **R** $D(r)$ **H** $v(r)$ **L** Impurity Source rate $1.0 1.0$ Fractional_abundance $Ne¹⁰$ $0.8₁$ Ne^8 0.8 0.6 0.6 $0.4 0.4$ 0.2 0.2 0.0 $\mathbf{0.0}$

Estimating emissivity of He-like neon and He-like argon from coronal equilibrium using STRAHL code

 $\varepsilon_{z,i,j}(r) = n_{z,i}(r) * n_e(r) * PEC_{z,i,j}(r)$ (PEC from ADAS) $n_{z,i}(r)$ = fractional abundance $*$ % of impurity $*$ $n_e(\mathsf{r})$

Both He-like neon and He-like argon are possible

Choice of Crystal

He like Ne, Ne^{8+} at 13.4474 Å Suitable crystals:

- 1. Mica (200), 2d spacing:19.84 Å, θ_h ~42°
	- natural crystalimperfections
	- Poor resolving power (λ/Δλ)~1800 - Not available
- 2. TIAP (100), 2d spacing: 25.9 \AA , θ_h ~31°
	- Engineering limitation due to θ_h
- 3. KAP (100), 2d spacing: 26.63 \AA , θ_h ~30°
	- Engineering limitation due to θ_h

He like Ar, Ar^{16+} at 3.9494 Å Suitable crystal:

- 1. Quartz $(11\overline{2}0)$, 2d spacing:
- 4.913 Å, $θ_h$ ~53.5 $^{\circ}$
	- Extensively used, high (λ/Δλ)
	- Engineering limitation due to θ_h
- **2. Silicon (111), 2d spacing: 6.271 Å,**
	- **Selected for study**
	- **Bragg angle:**
	- $\theta_{h,w}$ = 39.03° for w line at **3.9494Å**
	- $\theta_{b,z}$ =39.56° for z line at **3.9944 Å**

He-like Argon is chosen!

X-RAY DATA BOOKLET- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 12

Silicon (111), 2d spacing: 6.271 Å, θ_h **~39° is selected for the**

measurements

He-like argon lines to be captured: Resonance line: (w): $1s^2$ 1S_0 - 1s2p 2P_1 at 3.9494 Å Satellite lines: (x) $1s^2$ 1S_0 - 1s2p 3P_2 at 3.9661 Å (y) $1s^2$ 1S_0 - 1s2p 3P_1 at 3.9695 Å (z) $1s^2$ 1S_0 - 1s2p 3S_1 at 3.9944 Å $\theta_{h,w}$ = 39.03° for w line, $\theta_{h,z}$ =39.56° for z line Average Design parameter: $\theta_{b,avg}$ = 39.3°, λ_{avg} =3.9719 Å Estimation of Resolving Power due to crystal rocking curve Rocking curve of Silicon (111) crystal obtained using XOP code $\Delta \theta$ = 0.101 *mrad* λ $\lambda\lambda$ = $\tan \theta_h$ $\Lambda \theta$ **Crystal (resolving power) Min. measurable Temperature** Silicon (111) \sim 7000 (rocking curve) \sim 130 eV $\Delta \lambda = \lambda \times 2.43 \times 10^{-3}$

 \boldsymbol{T}

 \boldsymbol{m}

13

Johann error further limits the resolution

XCS for ADITYA-U: Final Design Parameters

Side view

- L_{cp} (Crystal to plasma distance) = 1.47 m
- L_{cd} : Crystal to detector distance = 0.57 m
- Observable plasma area \sim 7 cm (l) x 2 cm (h)
- Maximum Tangential injection = 26˚ (~44% measurable component of v_{tor})

Assembly and Testing

Assembled XCS in Lab

Flange with Be foil

- 1) Leak testing of all system components: Leak rate achieved: \sim 10^-8 mbar I/s No welding joint issues- critical for UHV 2) Baking test of the main beam line
	- Baked at \sim 165 °C
- 3) Beryllium foil holder

(50 µm thickness, 50 mm diameter) Tested for differential pressures

System on Machine: First Results soon….. ¹⁷

- For realising the velocity and temperatures measurements with XCS using Ar^{16+ ----} Few questions still remained to be answered:
- Is Ar¹⁶⁺ available in sufficient quantity in ADITYA-U core?
- How much quantity of Ar needs to puffed?
- How the Ar transport to ADITYA-U core?
- Does ADITYA-U core-plasma rotate toroidally with sufficient velocity?
- Can the core-plasma rotation be measured with another diagnostics and used for calibrating the crystal spectrometer?

Earlier calculations based on assumed quantities

Scarce Literature on Ar transport

Plasma rotation measurements and Argon impurity transport studies in Ohmic discharges of ADITYA-U using passive spectroscopy

- Answers above questions regarding XCS
- Increases the knowledge base of Ar impurity transport in tokamaks
- Increases the knowledge base on plasma rotation

Set-up: Passive Visible Spectroscopy in ADITYA-U

Collection Optics: Light collection from Tokamak

Seven LoSs covering the entire plasma radius

Two Spectrometer- CCD systems

Focal Length: 1 m / 0.5 m F-number: *f/8.*7 / *f/*15 Grating: 1800 / 600 grooves/mm CCD: 2048 x 512 pixels (13.5 μm) / 1024 x 256 pixels (26 µm) Dispersion: 0.00749 / 0.0433 nm / pixel G. Shukla, M. B. Chowdhuri, K. Shah. et al., RSI. 89, 10D132 (2018)

Instrumental function Relative intensity

Wavelength Calibration

- (1) Pen-ray sources
- (2) Perpendicular view measurements
- (3) Parallel View measurements from both sides

Intensity Calibration

Using Lab-sphere and white-light source CSTM-URS-600

G. Shukla, M. B. Chowdhuri, K. Shah. et al., RSI. 92, 063517 (2021)¹⁹

Passive Visible Spectroscopy in ADITYA-U

Argon Transport studies using Spectral Line intensities

Radial Brightness profile is converted into radial Emissivity profile using Abel-like Matrix inversion technique

(R. Bell, Rev. Sci. Instrum. 66 (1) January 1995)

Toroidal rotation velocity is estimated using Doppler shift measurements

Spectral emission of passive charge exchange line, C^{5+} at 529.05 nm (n 8 \rightarrow 7)

$$
v = \frac{\Delta \lambda_{shift} * c}{\lambda \cos \theta}
$$

Velocity resolution: 4.27 km/s per pixel shift

Radial profile of Toroidal rotation (v_{tor}) profile obtained by inverting the chord-averaged velocity measurements (Shi et al. Rev. Sci. Instrum. 83, 10D717 (2012)) $_{20}$

Set-up: VUV Spectroscopy in ADITYA-U

Three Gratings: 290, 450, 2105 grooves/mm

Wavelength range:

- Grating 290 : $15 < \lambda < 170$ nm
- Grating 450 : $10 < \lambda < 110$ nm
- Grating 2105 : 9.5 < λ < 32 nm

Entrance slit: 10-250 μ m, (30 μ m for present study)

Reciprocal linear dispersion respectively: 0.122 nm/pixel / 0.0813 nm/pixel / 0.020 nm/pixel

CCD: 1340/255 pixels and Pixel size: 20 μ m

Used for Measurement of Ar^{13+} and Ar¹⁴⁺ VUV line emissions

Observed Ar^{13+} and Ar^{14+} transitions Ar^{13+} at 18.796 nm (2s²2p²P_{1.5} - 2s2p^{22p}_{1.5}) Ar^{14+} at 22.115 nm (1s²2s^{2 1}S₀ - 1s²2s2p¹P₁)

Line integrated measurements Experimental Ratio of the brightness of the Lines:

$$
\frac{I_{Ar^{13+}}}{I_{Ar^{14+}}}
$$

used for estimating the radial profile of Ar emission $_{\text{21}}$

After obtaining the emissivity profile of Ar⁺ line and the intensity ratio of Ar^{13+} at 18.796 nm and Ar^{14+} at 22.115 nm spectral line

The Argon transport coefficients are obtained by comparing the measured emissivity and line ratio with the those simulated with STRAHL code

R. Dux,2005 Impurity Transport in Tokamak Plasmas IPP10/27,Garching. Behringer K. 1987 JET-R(87)08, JET Joint Undertaking, Culham.

From best fit of Ar^{1+} profile in the edge and $(I_{Ar^{13+}}/I_{Ar^{14+}})$ line ratio in the core

Measured profiles of diffusion and convection

Comparison- Neoclassical and Measured diffusion and convection

Argon transport is above Neoclassical values in edge and core of ADITYA-U !

Toroidal Rotation in Aditya-U Tokamak

From the Doppler shift of passive charge exchange line of C5+ at 529 nm Intrinsic toroidal rotation $v_\phi{\sim}-20\frac{km}{s}$ in counter-current direction in low density Ohmic discharges of ADITYA-U

Direction of toroidal rotation reverses to co-current direction in high density Ohmic discharges (SOC regime) [Density threshold ~ 2.8 x 10^{19} m^{-3}]

G. Shukla, K. Shah. et al ., Nucl. Fusion 59 (2019) 106049 27

Toroidal Rotation in Aditya-U Tokamak

The core rotation increases with stored energy

The core and mid-radius rotation velocity increases in opposite directions with plasma current

Toroidal Rotation in Aditya-U Tokamak

Intrinsic toroidal rotation values can be modified using neon injection

Counter-Current rotation values decreases with neon injection

Energy confinement time increases with neon injection

Density threshold for rotation reversal can be lowered using Ne puff

M. B. Chowdhuri, K. Shah et al., manuscript in progress

Outcome from visible and VUV spectroscopy

From Argon transport studies:

Input to XCS:

- Estimated Ar^{16+} density in core plasma of ADITYA-U ~ (4 x 10^{15} / m^{3})
- $\rm -Ar^{16+}$ density (~ 4 x $\rm 10^{15} / m^3)$ corresponds to $\rm Ar^{16+}$ emissivity ~ (8x $\rm 10^{14} / \ m^3 s \ sr)$
- $-$ Assuming \sim 50% overall losses in the spectrometer, this corresponds to intensity \sim 10⁴ counts on CCD

Physics Study:

‒ Argon transport is found to exceed the non-neoclassical value both in plasma edge and core. Argon transport in the edge seems to be influenced by fluctuations (ITG).

From Rotation studies:

Input to XCS:

- Intrinsic toroidal plasma rotation $($ 20 km/s) is observed in ADITYA-U, hence measurements are possible with the designed XCS system
- ‒ Simultaneous measurement with PCX and XCS will be useful in wavelength calibration of XCS.

Physics Study:

- $-$ Advantage with ADITYA-U: Passive charge exchange line of C^{5+} available from core. Reversal of rotation direction is observed in high density plasmas
- ‒ Variations in rotation magnitudes has been observed using Ne puff.
- ‒ Controlled variation of intrinsic toroidal rotation by changing fuel gas, varying the plasma current as well as neon puffing will help in consolidating rotation measurements using XCS.

Summary

- ‒ Design, development, fabrication, installation of first Tangential X-ray Crystal Spectrometer (XCS) for an Indian tokamak (Aditya-U)
- ‒ Intrinsic plasma toroidal rotation and ion (electron) temperature will be obtained by measuring the He-like Ar^{16+} spectral line emission at 0.39494 nm using the XCS system.
- $-$ To optimize the Argon injection for sufficient presence of Ar^{16+} from the core-plasma, detailed argon transport study is carried out.
- Ar^{1+} line emission in the visible range using a visible spectrometer and Ar^{13+} and Ar^{14+} spectral emissions in VUV range using a VUV spectrometer are measured.
- ‒ Measured emissions are compared with those simulated using STRAHL code to obtain the diffusivity and convective velocity of argon in ADITYA-U.
- ‒ Argon transport is found to exceed the neoclassical value both in plasma edge and core. Argon transport in the edge seems to be influenced by fluctuations (ITG).
- $-$ Intrinsic plasma toroidal rotation \sim 20 km/s measured using the passive charge exchange line of $C⁵⁺$ (529 nm) using Doppler shift measurements in visible region.
- ‒ Reversal of rotation direction is observed in high density plasmas and variations in rotation magnitudes has been observed using Ne puff.
- ‒ Intrinsic toroidal rotation increase with stored energy and its radial shear has been found to be increasing with plasma current.
- ‒ Simultaneous measurement with PCX and XCS will be useful in wavelength calibration of XCS.

Acknowledgements

I sincerely thank all my collaborators…

- **Prof. Joydeep Ghosh and** Aditya-U operation and diagnostic team, IPR
- **Dr. Malay Bikas Chowdhuri** and Spectroscopy division, IPR
- **Dr. Balamurali Krishna Mayya K** (PDEU)
- Drafting and workshop division, IPR.
- Special Thanks to **Dr. Luis Delgado (PPPL), Dr. Novimir Pablant (PPPL), Prof. Shigeru Morita (NIFS), Dr. Sang Gon Lee (NFRI)**
- The work done is partially supported by the Department of Atomic Energy-Board of Research in Nuclear Sciences (DAE-BRNS) funded Project No. 2931.

"Alone we can do so little; together we can do so much…" ― Helen Keller 32