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Fusion experiments produce ever larger data sets. Deep 
learning keeps scaling with dataset size.
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Data production rates at fusion experiments are ever 
increasing:

● ITER expected to produce ~2PB per day in full 
operation.

● KSTAR - order of TB/day
● NSTX-U - order of 1-10 GB/day

Today, a large fraction of measurement data is only 
written, but never analyzed for various reasons.

Automatic data labelling and extraction will be beneficial 
for long-pulse operation. 

GPT-3 / Dall-e 2: O(10TB) training data sets

http://research.baidu.com Alom et al. Electronics 8(3) 292 2019

http://research.baidu.com/Blog/index-view?id=89
https://doi.org/10.3390/electronics8030292
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Unsupervised learning promises to unlock deep 
learnings performance scaling with dataset size.
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Bustos et al. PPCF 63 095002 (2021)

Jalalvand et al. NF 62 026007 (2022)

Kates-Harbeck et al. Nature 568 526 (2019)

Montes et al. NF 61 026022 (2021)

About 1 week of data 
labelling

Manually annotating 500 spectrogram 
images

10_000 shots labelled

https://doi.org/10.1088/1361-6587/ac08f7
https://doi.org/10.1088/1741-4326/ac3be7
https://doi.org/10.1038/s41586-019-1116-4
https://doi.org/10.1088/1741-4326/abcdb9
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Unsupervised ML models identify structure within 
datasets and cluster it

Premise: A dataset contains some structure that allows to categorize it into separate groups - 
Input distribution p(x) contains information so that one can calculate p(y=k|x) where k is a 
class label
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● K-Means or DBSCAN have computational (and 
memory) complexity of O(n2)

● Relying on Euclidian distance, unsuitable for images

https://scikit-learn.org

https://blog.keras.io/

Krizhevsky et al. Alexnet (2012)

Integrating deep neural networks with clustering approaches 
in an end-to-end model is a novel direction of research.
Can such models classify ECEI data?

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
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ECEI diagnostic at KSTAR used to study MHD 
phenomena
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• KSTAR ECEI diagnostic: samples 24x8=192 
channels with ~MHz sampling rate

• Diagnostics produces image time-series with 
about 1GB/sec

Yun et al. RSI 85 11D820 (2014)

Fast/Slow sawtooth crash Choe et al. NF 106038 2018

Interaction between MI and turbulence Choi et al NF 57 126058 2017

Overview: H. Park APX 4 2019

https://doi.org/10.1063/1.4890401
https://doi.org/10.1088/1741-4326/aad750
https://doi.org/10.1088/1741-4326/aa86fe
https://doi.org/10.1080/23746149.2019.1633956
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A dataset of MHD phenomena observed by ECEI is 
compiled

18 KSTAR Shots. 5 Shots with 3/2 magnetic islands, 12 shots with 2/1 magnetic islands, 1 
Shot with ELM filaments. Varying lengths, about 0.5 - 5 seconds.

• Preprocessing: Applying a frequency filter, normalized and clamped to ±0.15 δT
e
/<T

e
>
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● Data understood as sequences - Patches are correlated across frames.
● Data is normalized to values between ±1 
● Histograms are uni-modal, vary in structure, but are all symmetric.
● Bad channels may cause outliers -  Need to be manually imputed
● Data from other class representatives are qualitatively similar 

2/1 island 3/2 island ELM filament
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Generative Adversarial Networks allow point-wise 
sampling of arbitrary data distributions
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StyleGAN2 - Karras et al. (2019)               https://arxiv.org/abs/1912.04958          https://thispersondoesnotexist.com/

https://arxiv.org/abs/1912.04958
https://thispersondoesnotexist.com/
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GANs consists of two models trained to out-smart the 
other one.
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z ~ Normal(0,1)

G(z)

x

Loss: 
real/fake?

backpropagation

Connection to classification: The Discriminator predicts a probability that a sample is from the distribution X.

- Discriminator maximizes log p(y=1|x,D)
- Generator maximizes p(y=1|G(z), D), which minimizes 

log(1-p(y=1|G(z), D))

Goodfellow et al. (2014) https://arxiv.org/abs/1406.2661

Generator

Discriminator

https://arxiv.org/abs/1406.2661
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- In standard GANs, D is a binary classifier trained to detect features that are not captured by G. These may not be 
the optimal features to perform classification.

- Instead, task D to assign class probabilities (k=1…K) for each sample 
- G has to learn real features for the classes and D needs to distinguish these

           from real class features                                                                                                                           CatGAN, Springenberg ICLR 2016

Adapting the GAN loss function allows to classify images
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Discriminator:
1. Prior on class distribution: Use all classes equally
2. Certain about class assignment from X
3. Uncertain about class assignment from G(z)

● Loss function can be extended to include cross-entropy in 
case labels are available. 

Generator:
1. Use all classes equally
2. Generate examples with peaked class probability

H: Shannon entropy

https://arxiv.org/abs/1511.06390
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Shallow convolutional architectures suitable for ECEI 
data
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Discriminator performs series of 3d convolution
Input are 8 consecutive ECEI frames
Output is a 3-element vector, giving class probability

Filters: [5,3,3] (16ch) - [5,3,5] (16ch) - [5,3,1] (32ch) - [9,1,1](32ch)
BatchNorm applied after every convolutional layer
Minibatch Discrimination aids in avoiding mode collapse in the Generator  
Salimans NeurIPS (2016)

Generator

Dense(latent, 768, relu)

ConvTranspose((5,5,5), 32->32, stride=2, leakyrelu)

Conv((5,3,3), 32->32, pad=1, leakyrelu)

Conv((5,3,3), 32->16, pad=1, leakyrelu)

ConvTranspose((4,4,4), 16->16, stride=2, leakyrelu)

Conv((3,3,3), 16->16, pad=1, leakyrelu)

Conv((3,3,3), 16->1, tanh)

BatchNorm applied after every convolutional layer

http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
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No single metric tells whether the classifier is well 
trained
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Evaluated using 0.1s (12,500 frames) per discharge and 3 discharges (2/1 Island, 3/2 island, ELM)
Parameters scanned:
Batch size: 64, 128. Learning rates: ((2e-4, 1e-3), (5e-4, 1e-3), (1e-3, 1e-3)), Channels: 
[16,16,32,32], [32,32,64,64], Lambda: (0.0, 0.1, 1.0), latent dim: 64, 128, alpha: 0.01, 0.1, 0.2
= 216 configurations.

2/1 island?ELM?

● Goal: Cluster with high accuracy
● Objective: E[H(p(y|G(z),D))] >  E[H(p(y|x,D))]

○ More uncertainty for generated data than 
for real data

● Well trained GANs produce sequences similar to 
those in the training data
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GANs can cluster ECEi data reasonably well but are 
difficult to train 
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Reference implementation:
● 1.39 ± 0.28 error rate on MNIST
● 19.58 ± 0.58 error rate on 

CIFAR10 (semi-supervised)

Springenberg ICLR 2016

https://arxiv.org/abs/1511.06390
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Divergences measure separation and compactness of 
distribution functions 
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Separate ✅
Compact 
✅ Separate ✅

Compact ❌

Separate ❌
Compact ✅

Separate ❌
Compact 
❌

Cauchy-Schwarz Divergence
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Integrate divergence-based clustering and deep neural 
networks.
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Kampffmeyer et al. Neu. Networks 113 (2019)

Deep Neural Network extracts features from input.
Loss function enforces separation and compactness of 
resulting cluster.
Softmax output is a k-simplex in Rk. Orthogonality of 
cluster assignments can be optimized by exploiting the 
geometry of the output spaced.

Output A = {𝛼}
q,i

 assigns vector 𝛼 to cluster C
i
.

𝛼TK
h
𝛼 - Parzen window estimate of the CS Divergence 

mTK
h
m - Push assignments to corner of the simplex

sum(triu(AAT)) -  Favors orthogonal cluster assignments

https://doi.org/10.1016/j.neunet.2019.01.015
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Learning rate and batch size are important 
hyperparameters for DDC

Parameters scanned:
Batch size: 64, 128, 256. Learning rates: (10-4, 2*10-4, 5*10-5, 10-3), num_channels: ([16, 32], [32, 
64]), num_depth/filter_size:   ([5, [3,3]], [10, [5,5]]), final fully connected layer size: (64, 128, 256)
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- Learning rates of 10-4 are optimal (ADAM optimizer)
- Batch sizes of 256 significantly better than 64.
- Cluster accuracy changes little when varying FC layer size / length of input sequence 
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Take-away and outlook

• Unsupervised deep learning promises to tap into deep-learnings scaling with 
data while avoiding expensive data labelling

• Deep learning architectures can be trained to cluster ECE imaging data in an 
end-to-end fashion

• Methods typically rely on information-theoretic concepts, such as entropy and 
divergences. Unique requirements, such as prior on class distribution.

• Both, GAN and DDC achieve 60-70% clustering accuracy when tasked to cluster 
ECEI measurements of MHD phenomena

• Explore interpretability of cluster assignments
• Explore more recent developments in deep clustering algorithms
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Code available online: https://github.com/rkube/ecei_generative

https://github.com/rkube/ecei_generative
https://github.com/rkube/ecei_generative

