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Fusion experiments produce ever larger data sets. Deep
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http://research.baidu.com/Blog/index-view?id=89
https://doi.org/10.3390/electronics8030292
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Figure 3. Number of instances for each of the manually-labeled AE
types, for a random assignment of 450 training and 150 validation
discharges. The distribution is heavily skewed towards RSAE and
TAE activity.

Jalalvand et al. NF 62 026007 (2022)

Extended Data Table 2 | Datasets used h)
Machine Shot rang

JET train 66027 — 79853 2894 215 JET carbon wall campaigns C23-C27b
JET validate 66027 — 79853 1425 87 JET carbon wall campaigns C23-C27b
JET test 81852 — 83793 1191 174 JET ITER-like wall campaigns C28-30
DIII-D train 125500 — 168555 1734 407 DIII-D shots since 2006
DIII-D validate | 125500 — 168555 853 197 DIII-D shots since 2006
DIII-D test 125500 — 168555 862 206 DIII-D shots since 2006

‘Shots were obtained from the respective machines. All shots that contain data for all signals were used. No shots for bad or  or for or
intentional disruptiors.

Kates-Harbeck et al. Nature 568 526 (2019)

We then had to annotate, 1.e. create the ground truth of all
the 500 spectrograms to identify the modes activity and train
the neural network. The annotation process was done manually
using any simple picture editor, freely available in all operat-

Bustos et al. PPCF 63 095002 (2021)

Databases of physics events have been used in various fusion research applications, including
the development of scaling laws and disruption avoidance algorithms, yet they can be
time-consuming and tedious to construct. This paper presents a novel application of the label
spreading semi-supervised learning algorithm to accelerate this process by detecting distinct
events in a large dataset of discharges, given few manually labeled examples. A high detection

Montes et al. NF 61 026022 (2021)
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https://doi.org/10.1088/1361-6587/ac08f7
https://doi.org/10.1088/1741-4326/ac3be7
https://doi.org/10.1038/s41586-019-1116-4
https://doi.org/10.1088/1741-4326/abcdb9
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Unsupervised ML models identify structure within

Premise: A dataset contains some structure that allows to categorize it into separate groups -
Input distribution p(x) contains information so that one can calculate p(y=k|x) where k is a
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e K-Means or DBSCAN have computational (and
memory) complexity of O(n?)

e  Relying on Euclidian distance, unsuitable for images
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https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
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ECEI diagnostic at KSTAR used to study MHD

15 ECEI

|

N

\

(shot#7328, t=7.917s)

y
!
-
L
‘

216 220 224 216 220 224 R (cm)

Yun et al. RSI 85 11D820 (2014)

*  KSTAR ECEI diagnostic: samples 24x8=192
channels with “MHz sampling rate

*  Diagnostics produces image time-series with
about 1GB/sec
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https://doi.org/10.1063/1.4890401
https://doi.org/10.1088/1741-4326/aad750
https://doi.org/10.1088/1741-4326/aa86fe
https://doi.org/10.1080/23746149.2019.1633956

A dataset of MHD phenomena observed by ECEl is

18 KSTAR Shots. 5 Shots with 3/2 magnetic islands, 12 shots with 2/1 magnetic islands, 1
Shot with ELM filaments. Varying lengths, about 0.5 - 5 seconds.

Preprocessing: Applying a frequency filter, normalized and clamped to £0.15 6Te/<Te>

25880 GR t=5.002000s 25260 GT t=5.901000s 22289 GT t=2.702000s
UnitRange Transformed - -
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Data understood as sequences - Patches are correlated across frames.
Data is normalized to values between +1

Histograms are uni-modal, vary in structure, but are all symmetric.
Bad channels may cause outliers - Need to be manually imputed
Data from other class representatives are qualitatively similar
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Generative Adversarial Networks allow point-wise

StyleGAN2 - Karras et al. (2019) https://arxiv.org/abs/1912.04958 https://thispersondoesnotexist.com/
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https://arxiv.org/abs/1912.04958
https://thispersondoesnotexist.com/

GANSs consists of two models trained to out-smart the

mz"‘NormaI(O,l) Generator
backpropagation
€mmmmmmmmm-eo mTTTTTT T mmmmmmm—mmmmmoo : Goodfellow et al. (2014) https://arxiv.org/abs/1406.2661
: : https://arxiv.org » stat ¢
G(z2) M . [1406.2661] Generative Adversarial Networks - arXiv
. > ! by IJ Goodfellow - 2014 - Cited by 43701 — Generative Adversarial Networks. Authors:lan J.
X _ 4’.
. ———> s

Discriminator
min max Ey~x [logp(y = 1|z, D)] + E.p. (2) [log 1 — p(y = 1|G(2), D)

- Discriminator maximizes log p(y=1|x,D)
- Generator maximizes p(y=1|G(z), D), which minimizes
log(1-p(y=1]G(z), D))

Connection to classification: The Discriminator predicts a probability that a sample is from the distribution X.
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https://arxiv.org/abs/1406.2661

Adapting the GAN loss function allows to classify image:

- Instandard GANSs, D is a binary classifier trained to detect features that are not captured by G. These may not be

the optimal features to perform classification.

- Instead, task D to assign class probabilities (k=1...K) for each sample ply = klz, D) = —— Di(2)
- G hasto learn real features for the classes and D needs to distinguish these 2 k=1 €Xp Di(2)
from real class features CatGAN, Springenberg ICLR 2016
Discriminator: s .
. . . . . annon entro
1. Prior on class distribution: Use all classes equally Q) oY (ii) (i)
2. Certain about class assignment from X minimize maximize maximize
3. Uncertain about class assignment from G(z) Hlp(ylx, D)]  Hlp(y|G(z), D)| H[p(y|D)]
max Hx [p(y]D)] — Eawx [H(p(y}, D) + Bavp ) [H(p(3]G(2), D)) O00E
£ N\
® Loss function can be extended to include cross-entropy in P | lDlI NE"(V'*‘:b(xN)
. D D(G z D(x!
case labels are available. (")A (G(2) (&—
Generator: real "o generatedf

1. Use all classes equally
2. Generate examples with peaked class probability

mén —Hx [p(y|D)] + Ezwpz(z) [H(p(y|G(Z), D))

<1 [
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https://arxiv.org/abs/1511.06390

Shallow convolutional architectures suitable for ECEI

Discriminator performs series of 3d convolution Generator
Input are 8 consecutive ECEl frames
Output is a 3-element vector, giving class probability Dense(latent, 768, relu)
b1z ConvTranspose((5,5,5), 32->32, stride=2, leakyrelu)

Conv((5,3,3), 32->32, pad=1, leakyrelu)

Conv((5,3,3), 32->16, pad=1, leakyrelu)

ConvTranspose((4,4,4), 16->16, stride=2, leakyrelu)

Conv((3,3,3), 16->16, pad=1, leakyrelu)

Filters: [5,3,3] (16¢ch) - [5,3,5] (16¢h) - [5,3,1] (32ch) - [9,1,1](32ch) Conv((3,3,3), 16->1, tanh)

BatchNorm applied after every convolutional layer

Minibatch Discrimination aids in avoiding mode collapse in the Generator
Salimans NeurlPS (2016)

BatchNorm applied after every convolutional layer
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http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf

No single metric tells whether the classifier is well

cluster_accuracy histy_fake
' e  Goal: Cluster with high accuracy
X 0.8 . . .
b e  Objective: E[H(p(y|G(z),D))] > E[H(p(y|x,D))]
oe m o o  More uncertainty for generated data than
for real data
e  Well trained GANs produce sequences similar to
0 step o MezEe i : o R e those in the training data
0 50 100 150 0 50 100 150
E_real, E_fake histy_real
. 0s ELM? 2/1 island?
- frame 1 frame 1
0.6 1.00 — 1.00
0.4 04 0.75 0.75
20
02 L 0.50 0.50
0 Step 0 — P 0.25 i 0.25
0 50 100 150 0 50 100 50

-025 10 -0.25

Evaluated using 0.1s (12,500 frames) per discharge and 3 discharges (2/1 Island, 3/2 island, ELM)
Parameters scanned:

Batch size: 64, 128. Learning rates: ((2e-4, 1e-3), (5e-4, 1le-3), (1e-3, 1e-3)), Channels:
[16,16,32,32], [32,32,64,64], Lambda: (0.0, 0.1, 1.0), latent dim: 64, 128, alpha: 0.01, 0.1, 0.2

= 216 configurations.

-0.50 -0.50

-0.75 -0.75

-1.00 -1.00

=AA
12345678 12345678
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GANs can cluster ECEi data reasonably well but are

Reference implementation:

Cluster accuracy Cluster accuracy
= activation_alpha: 0.1 = activation_alpha: 0.2 = lambda: 1 = lambda: @ = lambda: 0.1 ([ ] 1-39 i 0-28 error rate On MNIST
= activation_alpha: 0.01
. e 19.58+0.58 error rate on
08 . .
08 CIFAR10 (semi-supervised)
0.7 o
06

06
05 0s Springenberg ICLR 2016
0.4 04
03 ep 03 Step

50 100 150 200 250 300 50 100 150 200 250 300

Cluster accuracy Cluster accuracy
= batch_size: 128 = batch_size: 64 = latent_dim: 64 = latent_dim: 128

0.9 0.9
0.8 0.8
0.7 0.7
06 0.6
05 05
0.4 0.4
03 Step 03 Step

50 100 150 200 250 300 50 100 150 200 250 300
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Divergences measure separation and compactness of

Cauchy-Schwarz Divergence

K—-1 K-1
Dos (@), i) = ~log 72 3 [, ()

=5 pi@24(@) [ ps()2d()
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Integrate divergence-based clustering and deep neural

[ Separation 4+
K, Compactness
4 TKno
Input Conv Conv FC Output G
Layer Layer Layer Layer Layer Loss | m K;%m
DEEP _—— X ; Af
NEURAL |—> Orthogonality
NETWORK ~ orthogonality <2y == [y ([l ) 00 .
Ix >
cluster MEssagEssas > (a) - Cluster

compactness

K | v
¥ separation

~ o

. Assignements
assignments

Deep Neural Network extracts features from input. Output A = {a}q’i assigns vector « to cluster C..

Loss function enforces separation and compactness of

resulting cluster. aTKha - Parzen window estimate of the CS Divergence
Softmax output is a k-simplex in R*. Orthogonality of mTKhm - Push assignments to corner of the simplex
cluster assignments can be optimized by exploiting the sum(triu(AAT)) - Favors orthogonal cluster assignments

geometry of the output spaced.
Kampffmeyer et al. Neu. Networks 113 (2019)
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https://doi.org/10.1016/j.neunet.2019.01.015

Learning rate and batch size are important

ME N 1)1
Parameters scanned:

Batch size: 64, 128, 256. Learning rates: (10, 2%10%, 5*10°%, 10%), num_channels: ([16, 32], [32,  _Datasets Method NMI ACC[%]

641), num_depth/filter_size: ([5, [3,3]], [10, [5,5]]), final fully connected layer size: (64, 128, 256) Bomeang 0200 59.93

- ITC (parzen) - -
o ITC (kNN) ; .

Computig ot merice rom 100 s o AU e SEC 0.77 68.82

= 1r: 0.001 = lr: 0.0005 = lr: 0.0002 = lr: 0.0001 — fc_size: 256 = fc_size: 128 = fc_size: 64 ]\INIST LDI\{[GI 081 8303

06 % 06 DEC 0.81 84.31

R T DDC 0.83 8658

DDC-VOTE 0.87 88.49

02 02 K-means 0.13 51.33

, step , step ITC (parzen) 0.003 35.30

0 20 40 60 80 100 0 20 40 60 80 100 ITC (kNN) 010 5395

SEC 0.15 49.00

cluster_accuracy cluster_accuracy SEALS_3 o

— batch_size: 2% = bateh sizer 136 — batch_size: 64 — nunchamners: 130,647 = mun channels: [16,32] LDMGI 0.13 50.43

DEC 0.17 50.33

6—;&_"« % DDC 0.14  55.97

DDC-VOTE 0.3 53.30

K-means 0.015 56.85

o o ITC (parzen)  0.003 51.55

) step . step ITC (kNN) 0.020 57.20

0 20 40 60 80 100 0 20 40 60 80 100 SEC 0.021 58. 15

SEALS-2 LDMGI 0.018 57.85

- Learning rates of 10™ are optimal (ADAM optimizer) ggg 0601()55 ;‘2‘34

; .05

- Batch sizes of 256 significantly better than 64. DDC-VOTE  0.18  74.65

- Cluster accuracy changes little when varying FC layer size / length of input sequence
@ 2022-05-09 R. Kube et al. / NSTX-U seminar 19



Unsupervised Machine Learning

Dataset
Approach 1: Generative Adversarial Networks

Approach 2: Deep Divergence-based Clustering
Take-Away and Outlook

a0~

@ 2022-05-09 R. Kube et al. / NSTX-U seminar 20



Take-away and outlook

* Unsupervised deep learning promises to tap into deep-learnings scaling with
data while avoiding expensive data labelling

* Deep learning architectures can be trained to cluster ECE imaging data in an
end-to-end fashion

* Methods typically rely on information-theoretic concepts, such as entropy and
divergences. Unique requirements, such as prior on class distribution.

* Both, GAN and DDC achieve 60-70% clustering accuracy when tasked to cluster
ECEl measurements of MHD phenomena mjidcim

 Explore interpretability of cluster assignments E"—'ﬁ ."I

* Explore more recent developments in deep clustering algorithms ;:'._-‘I;'f-‘ﬂ

Code available online: https://github.com/rkube/ecei generative
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https://github.com/rkube/ecei_generative
https://github.com/rkube/ecei_generative

