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Introduction: Divertor Detachment 
Can Be Problematic

- Divertor detachment is necessary for 
future fusion devices to ensure PFC 
lifetime

- Divertor detachment with medium-Z 
impurities has the tendency to 
create a highly radiating region at 
the X-point

- Can reduce pedestal performance

- Confinement can be maintained at the 
cost of high Z

eff

- Goal: create a detached divertor that 
confines radiation and impurities 
close to the target A. Kallenbach et al 2015 Nucl. Fusion 55 053026 4



Introduction: The Lithium Vapor Box
- The lithium vapor box seeks to detach via lithium vapor evaporation near the 

target, and condensation further upstream

- Original vapor box design 
imagines different chambers for 
condensation and evaporation

- A large focus of this work is 
determining the importance of 
the specific geometry

Diagram Credit: Jacob Schwartz
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Outline
- Introduction
- The Lithium Vapor Box at low power

- Detachment & Upstream Ionization Source

- Using baffles

- 65 MW/m2 Mitigation
- Slot vs Box Geometry

- Sensitivity Tests
- Recycling Coefficients

- Transport Coefficients

- Puff Location
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The Lithium Vapor Box is first 
modelled at Low Power/No Baffles

- Using SOLPS-ITER to get accurate picture of upstream 
plasma contamination

- No E x B drift at present

- Used NSTX-U magnetic equilibrium and current  
NSTX-U PFCs as an example

- D
2
 gas puff locations shown in green and orange

- Green locations are in experiment and used in profile matching

- Orange is added in Private Flux Region (PFR) for predictive 
simulations

- Lithium evaporator location in red

- 2 MW of input power

- 1.5x1019 m-3 at core boundary

Shot #:
204202
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Ionization Fronts Show 
Poor Li0 Containment
- Detachment is evident by 

the formation of a lithium 
recombination zone near 
the target

- But upstream ionization is 
a problem due to poor 
lithium vapor containment
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Effect on Temperature

- OMP separatrix temperature 
affected by lithium vapor 
evaporation and D

2
 puffing

- Target temperature drops 
precipitously once ~1023 Li/s is 
evaporated

- < 1eV T
e

Tar is associated with 
detachment
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Lithium Fraction Reduced by D-Puff
- The lithium fraction is strongly 

dependent on the amount of D
2
 

puffed in, allowing the lithium 
fraction to be effectively controlled.

- Upstream ionizations caused the 
1023 Li/s case to have non-negligible 
lithium at the OMP, regardless of D

2
 

puff

upstream ionization 
observed 10



Friction Forces Restrain 
Li Below X-Point

- The average friction force acting 
on an Li particle and the resulting 
density of Li averaged across the 
SOL flux tubes

- This is evidence of a ‘puff and 
pump’ effect whereby the ion 
friction force pushes the impurities 
towards the divertor plate, 
ensuring the upstream plasma is 
uncontaminated.
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Emdee et al. Nuclear Materials and 
Energy 27 (2021) 101004



Closure Reduces Upstream Ionization 
- Closing divertor 

removes the upstream 
ionization even at 
higher levels of 
divertor detachment

- Midplane lithium 
fraction (n

Li ions
/n

e
) 

goes from ~2% to 
~0.01% for the same 
upstream temperature

Li Evaporator RD=1 Hot Walls: RD=1400C Li walls: RD=0.5
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Outline
- Introduction
- The Lithium Vapor Box at low power

- Detachment & Upstream Ionization Source

- Using baffles

- 65 MW/m2 Mitigation
- Slot vs Box Geometry

- Sensitivity Tests

- Recycling Coefficients

- Transport Coefficients

- Puff Location
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Next: Model High Power Conditions

- Low power lithium vapor box can have nearly 
non-existent upstream lithium fraction if the divertor 
is closed to prevent upstream ionization

- Moved to predictive modeling of high power NSTX-U  
H-mode shots
- P

in 
= 10 MW

- q
target

max   ∼ 65 MW/m2

- 𝜆
q
 ∼ 4.8 mm
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Set Up: Box to Slot Comparison
- Set up two divertor designs, one closer to the original vapor box design with 

a set of baffles and one a slot divertor geometry
Box Slot
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Upstream Temperature Can Be Sustained 
At High Puff Rate
- The upstream temperature is 

unaffected lithium evaporation 
if diverter is baffled

- Slot sees upstream 
temperature degradation as 
lithium evaporation is 
increased

- Corresponds to n
Li
/n

e
>0.1 

upstream
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Lithium Fraction Controlled 
Better in Box
- Upstream lithium 

content in the slot 
geometry is less 
controlled

- The baffles are 
important for lithium 
containment
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Divertor Heat Flux Dramatically 
Reduced
- Slot has difficulty getting 

below 5 MW/m2 without 
reductions in upstream 
temperature

- Box can contain the lithium 
and reduce heat to the 
target further

18

Radiation + Neutral 
Heat Flux Included



Flow Reversal in Far SOL in Slot Geo.
- The far SOL lithium flow eventually becomes upstream-directed 

with enough lithium evaporation in the slot

19

Downstream-directed Li Flow
Upstream-directed Li Flow



Flow Never Reverses in Box Geo.
- In the box geometry the 

far SOL lithium flow  is 
never reversed for any of 
the cases tested
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Good Scenarios Are Available For Both 
Slot and Box for q

tar
max<10MW/m2

- Best case with 1023 D
2
/s

- Slot
- 6 x 1023 Li/s
- qmax

target
=9.5 MW/m2

- (n
Li
/n

e
)OMP,sep = 0.053

- Box
- 4 x 1023 Li/s
- qmax

target
=9.6MW/m2

- (n
Li
/n

e
)OMP,sep= 0.044

OR

- 10 x 1023 Li/s
- qmax

target
=4.9 MW/m2

- (n
Li
/n

e
)OMP,sep= 0.056 21



Outline
- Introduction
- The Lithium Vapor Box at low power

- Detachment & Upstream Ionization Source

- Using baffles

- 65 MW/m2 Mitigation
- Slot vs Box Geometry

- Sensitivity Tests

- Recycling Coefficients

- Transport Coefficients

- Puff Location
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Changing Upstream Recycling
- Testing sensitivity to 

upstream recycling 
coefficient (blue walls)

- Pumping at walls above 
the box can be 
controlled via surface 
temperature and 
deuterium loading

Box

23

→1.0



Upstream Pumping Reduces 
Impact of Gas Puff

- Region of target-directed flow expands significantly 
with reduction of upstream pumping 24

Downstream-directed Li Flow
Upstream-directed Li Flow

(n
Li
/n

e
)OMP=0.056 (n

Li
/n

e
)OMP=0.032

R=0.5→1.0

RUpstream=0.5 RUpstream=1.0



Changing Transport Coefficients
- Reduce D

n
 in core so that particle flux from core goes 

down
- 𝚪core = 9.0e22 D+/s →3.5x1022 D+/s

- Reduce 𝜒 in SOL to have more conservative estimate 
for λ

q
- Q

tar
max = 65 MW/m2 → 92 MW/m2 in base case

- λ
q 

= 4.8 mm → 2.8 mm
- R = 1.0 upstream
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CFR vs PFR Puffing Location
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PFR puff is more effective at 
upstream lithium reduction
- PFR puffing is much 

more effective than CFR 
puffing at upstream 
lithium reduction

- Difference can be 
greater than a factor of 
three for most extreme 
cases 27



PFR Puff Is Effective at Limiting 
Upstream Directed Flow

- Upstream-directed separatrix lithium flow is only 
reduced by PFR puffing (negative is upstream) 28



- For lithium and deuterium 
rates tested, PFR puffing 
was able to get to           15 
MW/m2 while CFR puffing 
was able to get below 10 
MW/m2

- Starting from 92 MW/m2
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CFR Puff Has Lower 
Heat Flux



CFR Puff Has More 
Line Radiation

- Lithium line radiation is 
reduced more so by PFR 
puffing than CFR puffing

- Less lithium content in 
the plasma led to less 
lithium radiation
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Simultaneous Puffing Leads to Low 
Heat Flux and Low Upstream Lithium
- Puffing from both sides can lead 

to the best of both worlds.

- (n
Li
/n

e
)LCFS

- PFR:   0.018
- Both: 0.0049
- CFR:   0.076
- None: 0.12

- No OMP temperature reduction
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Summary
- Detached solutions exist for current NSTX-U PFCs, but 

upstream ionization leads to non-negligible lithium 
content

- Baffles benefit neutral containment seen across a 
variety of powers; Engineering Trade-Offs T.B.D

- 65 MW/m2 can be reduced to ~ 5 MW/m2 with a 
lithium density ~ few percent of the upstream 
electron density
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Summary
- Upstream deuterium pumping is seen to have detrimental 

effects on upstream lithium concentration due to reduction 
in fuel puff efficacy

- PFR puffing is more effective at upstream lithium reduction 
due to reduction of upstream-directed lithium flow at 
separatrix

- CFR puffing is more effective at cooling since the high lithium 
content upstream allows more Li2+ line radiation

33



Back-Up Slides
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Future Work
- Near term

- Sensitivity to target recycling coefficient
- Sensitivity to target lithium evaporation

- Longer term
- Further optimization 
- Include drifts in SOLPS simulations (HFS Target)
- Integration with NSTX-U engineering
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Divertor Heat Flux
- Slot has difficulty getting 

below 5 MW/m2 even at 
highest deuterium puffing 
rate tested
- Slot goes unstable beyond 6 

x 1023 Li/s

- Box can contain the lithium 
and reduce heat to the 
target 

Radiation + neutral heat included
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Lithium Fraction
- Upstream lithium 

content in the slot 
geometry is less 
controlled

- The baffles are 
important for lithium 
containment
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Ionization Front Comparison
- Comparing ionization front between lithium and deuterium shows 

RD
warm

=1.0 makes deuterium ionization front above lithium, which 
is good for impurity containment (Casali et al. 2020)
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Effects on Temperature
- The upstream temperature is 

mostly unaffected by the 
increase in lithium evaporation

- Divertor closure does well at 
isolating cooling from upstream 
plasma 

- Slot performs similarly to box at high 
puffing but at no puffing the slot sees 
upstream temperature degradation as 
lithium evaporation is increased
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2D Line Radiation
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2D Line Radiation
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Pumping At Warm Liquid Li Walls 
Reduces Impact of Gas Puff
- Pumping at upstream walls removes puffed deuterium 

before it can be ionized and cause higher recycling 
rates, which stabilizes lithium fraction
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PFR Evaporation More Effective 
than CFR
- Attempting to have 

imbalanced evaporation has 
shows little difference 
between entirely PFR 
evaporation and a balanced 
scenario

- Entirely CFR side evaporation 
is significantly less efficient

- May simplify system
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Asymmetric Evaporation
- Access to high density separatrix field line makes PFR 

lithium evaporation radiate more easily
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Upstream Recycling Decreases Lithium Fraction

- Lithium reduced 
throughout SOL by 
reducing pumping

- Reducing deuterium 
pumping helps reduce 
lithium fraction
- (n

Li
/n

e
)OMP,sep=0.056→0.03

2
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Transport Coefficients Not 
Significant for Heat Flux 
- Despite raising heat flux 

from 65 MW/m2 to 92 
MW/m2 in the base 
case, the heat flux after 
evaporating lithium was 
not sensitive to change 
in transport coefficients

46

Both at
 4x1023Li/s, 1023 D

2
/s



Transport Coefficients Are 
Significant for Upstream Lithium
- At 4 x 1023 Li/s and 1023 D

2
/s

- Old Transport Coefficients: (n
Li
/n

e
)OMP = 0.044

- New Transport Coefficients: (n
Li
/n

e
)OMP = 0.065

- Particle flux from core is an important parameter for 
lithium containment!
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