

Mechanical and

Aerospace

Engineering

NSTX-U, MFS meeting

Optimizing edge confinement and stability via adaptive ELM control using RMPs

<u>S.K. Kim^{1,2}</u>, R. Shousha¹, S.H. Hahn³, A.O. Nelson¹, J. Wai¹, S.M. Yang², J.-K. Park², R. Nazikian², Q. Hu², N. Logan⁴, Y.M. Jeon³, Y. In⁵, J.H. Lee³, J. Kim³, Y.-S. Na⁶, F. Laggner², and E. Kolemen^{1,2}

¹Princeton University, USA ²Princeton Plasma Physics Laboratory, USA ³Korean Fusion Energy Research Institute, KFE, Korea ⁴Lawrence Livermore National Laboratory, LLNL ⁵Department of Physics, UNIST, KOREA ⁶Department of Nuclear Engineering, Seoul National University, KOREA

Princeton Plasma Control **control.princeton.edu**

Aug. 15. 2022 E-mail: sk42@princeton.edu

RMPs are promising method to stabilize the ELM crash, however there is remaining challenges for its application on ITER or future devices

- Challenges in ELM control via RMP
 - ✓ Less sustainability by small window.
 - ✓ Loss of plasma confinement.
- Real-time pedestal optimization with ELM control

✓ RT adaptive ELM control.

- Keep ELM-free.
- Recovers confinement (>60%).

Optimized ELM-free state

Ion pedestal widening is key of effective pedestal optimization using adaptive ELM control

- Key of successful pedestal optimization
 - \checkmark Ion pedestal widening
 - In ELM-suppressed state.
 - $\checkmark\,$ Contribution to adaptive control
 - Stronger confinement recovery (>50%)
 - Faster control convergence.

This talk introduces...

- Principle of adaptive control.
- Role of widened ion-pedestal.
- Origin of pedestal widening.

- Adaptive ELM control using RMPs
- Widened ion pedestal and increased pedestal response
- Enhanced pedestal recovery and field amplification
- Origin of widened ion pedestal
- Pedestal widening in another device
- Conclusion

Adaptive ELM control is effective approach to achieve and sustain steady-state ELM-free high confinement plasma

- RMP-hysteresis on confinement recovery
 - ✓ Hysteresis in RMP-ELM suppression
 - $I_{\rm RMP,IN} \geq I_{\rm RMP,OUT}$.
 - Enables confinement recovery.
 - \rightarrow By lowering I_{RMP} upto $I_{\text{RMP,OUT}}$.
- Real-time (RT) RMP control
 - $\checkmark I_{\rm RMP}$ for edge optimization
 - Sufficient to <u>sustain</u> suppression.
 - Minimal to <u>maximize</u> confinement.
 → By real-time adaptive control.

Adaptive ELM control relies on simple concept, initiated from DIII-D and further demonstrated in KSTAR

- Adaptive ELM control using RMPs
 - \checkmark $I_{\rm RMP}$ control with ELM detection [R. Shousha, APS-DPP 21]
 - ELMy $\rightarrow I_{\rm RMP}$ 1. •
 - ELM-free $\rightarrow I_{\text{RMP}} \downarrow$. •
 - **Previous real-time ELM control**
 - Initiated from DIII-D [F. Laggner, NF 20].
 - Preliminary trial with prescribed control boundary.
 - **Effective confinement recovery.**

Further demonstration in KSTAR with more adaptive scheme

[Schematic of adaptive ELM control]

Adaptive ELM control successfully optimizes the RMP level, maximizing the confinement recovery while maintaining ELM suppression

- ELM suppression in KSTAR with adaptive ELM control
 - ✓ <u>Recovered</u> initial H_{98} loss up to 60% ($G = H_{98}\beta_N/q_{95}^2$, 45%).
 - ✓ Fast convergence within 4 iterations (~5 s).
 - ✓ Well <u>sustained</u> ELM suppression.

Successful control convergence is due to weakened discontinuity of RMP-hysteresis: Easier re-access to the ELM suppression

- Changes in I_{RMP,IN/OUT} during control
 - ✓ $I_{\text{RMP,IN}}$: 4.6 → 3.5 kA (dominant). ✓ $I_{\text{RMP,OUT}}$: 3.3 → 3.5 kA. ✓ Discontinuity $|I_{\text{RMP,IN}} - I_{\text{RMP,OUT}}|\downarrow$.
- Effect of decreasing *I*_{RMP,IN}
 - ✓ Easier re-suppression.
 - $\checkmark\,$ Fast convergence and short ELMy period.

Focusing on profile dynamics in 1st iteration.

[Effect of decreasing $I_{\text{RMP,IN}}$ on control convergence]

- Adaptive ELM control using RMPs \rightarrow Successful control convergence due to decreasing $I_{\text{RMP,IN}}$.
- Widened ion pedestal and increased pedestal response
- Enhanced pedestal recovery and field amplification
- Origin of widened ion pedestal
- Pedestal widening in other device
- Conclusion

During ELM suppression periods, ion pedestal shows wider structure than ELMy phase.

- Widening of ion pedestal
 - ✓ <u>Ion pedestal</u> trace.
 - 5.3 \rightarrow 6.3 \rightarrow : ELMy, I_{RMP} \uparrow .
 - Decreasing height.

During ELM suppression periods, ion pedestal shows wider structure than ELMy phase.

- Widening of ion pedestal
 - ✓ <u>Ion pedestal</u> trace.
 - 5.3 \rightarrow 6.3 \rightarrow : ELMy, I_{RMP} \uparrow . - Decreasing height.
 - \rightarrow 6.6 \rightarrow 7.1s : ELM-free
 - Saturation with increasing width. (Decreased gradient)

During ELM suppression periods, ion pedestal shows wider structure than ELMy phase.

- Widening of ion pedestal
 - ✓ <u>Ion pedestal</u> trace.
 - 5.3 \rightarrow 6.3 \rightarrow : ELMy, I_{RMP} \uparrow . - Decreasing height.
 - → 6.6 → 7.1s : ELM-free
 Saturation with increasing width.
 (Decreased gradient)
 - → 7.1s → 7.7 s: ELM-free, I_{RMP} ↓.
 Increasing pedestal height/width. (Same gradient)

During ramp-down (ELM-free) periods, ion pedestal height shows larger variation to RMP strength than ramp-up (ELMy) phase.

Changed ion pedestal behavior in suppression periods lead plasma to the new state during RMP ramp down, affecting pedestal recovery

- Pedestal recovery during ramp-down
 - ✓ Increased limit (Pedestal height: $\beta_{p,ped}$)
 - $\beta_{p,ped} < 70 \%$ PBM limit: ELM free.
 - Wider ion pedestal \rightarrow Enhanced limit [T. Osborne 09].
 - Higher pedestal with ELM-free.
 - Faster recovery with $I_{\rm RMP} \downarrow$
 - Larger $T'_{i,ped}$ and $\beta'_{p,ped}$ in ELM-free.
 - Higher pedestal than ELMy for "same" RMP.

- Adaptive ELM control using RMPs \rightarrow Successful control convergence due to decreasing $I_{\text{RMP,IN}}$.
- Widened ion pedestal and increased pedestal response → Enhanced pedestal recovery.
- Enhanced confinement recovery and field amplification
- Origin of widened ion pedestal
- Pedestal widening in other device
- Conclusion

Enhanced pedestal recovery results in net confinement recovery more than just returning to previous ELMy state by lowering RMP

- Confinement recovery by RMP ramp-down
 - ✓ Confinement (H_{98}) recovery by pedestal \uparrow
 - Enhanced ion recovery as main contributor.

$n_{\mathrm{e,ped}}$	T _{e,ped}	T _{i,ped}
20%	13%	67%

- ✓ Benefit from enhanced pedestal recovery
 - Improved β_N path in ELM-free state.
 - Higher/Faster confinement by $I_{\text{RMP}} \downarrow$.
 - Higher: Increased $m{eta}_{\mathrm{p,ped}}$ limit
 - Faster: Faster pedestal recovery

Boosted	confinement recove	ery ((>50%).
			• •

Shot comparison clearly shows that "boosted" confinement recovery is outcome of widened ion pedestal

- Recovery without pedestal broadening
 - ✓ Without wider ion-pedestal
 - If no ion-pedestal widening
 → No favorable state during ELM-free.
 - ✓ Reduced confinement recovery
 - No boosted or bonus recovery.

Enhanced pedestal recovery amplifies the RMP response, resulting in easier ELM suppression re-entrance with smaller RMP current

- Decreased *I*_{RMP,IN} for ELM suppression
 - \checkmark Suppression entry threshold ($\delta B_{
 m r,th}$)
 - Perturbed field ($\delta B_{\rm r}$) by $I_{\rm RMP}$.
 - Suppression for $\delta B_{
 m r} \geq \delta B_{
 m r,th}$ [J.-K.Park 18].
 - $\delta B_{\rm r,th} \approx 20$ G in experiment. \rightarrow Red line.
 - ✓ Amplified $\delta B_{\rm r}$ by $\beta_{\rm p,ped}$
 - Same $\delta B_{\rm r}$ with smaller $I_{\rm RMP}$.
 - Larger $\beta_{p,ped}$ at re-suppression.
 - $I_{\text{RMP,IN}}$: 4.6 \rightarrow 3.6 kA.

 $I_{\text{RMP,IN}} \downarrow$ by wider ion pedestal.

Overall, widened ion pedestal facilitate the adaptive ELM control method by boosting the confinement hysteresis and reducing the system discontinuity

• Overall effect of ion pedestal broadening on adaptive ELM control

- Adaptive ELM control using RMPs \rightarrow Successful control convergence due to decreasing $I_{\text{RMP,IN}}$.
- Widened ion pedestal and increased pedestal response → Enhanced pedestal recovery.
- Enhanced confinement recovery and field amplification \rightarrow Decreases $I_{\text{RMP,IN}}$.
- Origin of widened ion pedestal
- Pedestal widening in other device
- Conclusion

Interpretive analysis suggests that ion pedestal broadening can be an outcome of increased heat transport during ELM suppression phase

- Origin of widened ion pedestal
 - ✓ RMP-induced transport in ELM-suppression
 - ELMy : No effective change.
 - ELM-free (>6.6s): Increased χ_i at pedestal.
 - \rightarrow Decreased pedestal gradient and broadening.
 - ✓ Distinguished properties of RMP-induced transport
 - Occurrence at ELM-free state.
 - <u>No proportionality</u> on $I_{\rm RMP}$ during ELM-free. \rightarrow Sustained pedestal gradient with $I_{\rm RMP} \downarrow$.
 - Additional transport mechanism may be required to explain pedestal gradient behavior. (in addition to classical transport)

Immediate occurrence of edge turbulence is observed after entering ELM suppression

- Occurrence of fluctuations
 - ✓ Measured fluctuation
 - Immediate occurrence at ELM-free.
 - ECEI ($\delta T_{\rm e}$), BES ($\delta n_{\rm e}$), Mirnov ($\delta B_{\rm pol}$) and CSS.
- Properties of edge turbulence
 - ✓ Frequency range
 - $\delta T_{
 m e}$ and $\delta n_{
 m e}$: 30-80 kHz (longer, $k
 ho_{s}$ < 0.3).
 - δB_{pol} and CSS: 200-400 kHz (shorter, $k\rho_s > 1$). \rightarrow More than one different fluctuations.

Edge localized fluctuation exhibits similar trends with ion diffusivity, suggesting the ion-scale turbulence as a main contributor to pedestal widening

- Properties of edge turbulence
 - ✓ Radial range
 - $\delta T_{
 m e}$ and $\delta n_{
 m e}:\psi_{
 m N}>$ 0.9.
- Correlation of edge turbulence with *I*_{RMP}
 - ✓ No reduction by $I_{\rm RMP}$ ↓.
 - Same for ion diffusivity.
 - → Suggesting it as a main contributor.
 - \checkmark Rapidly decreasing with losing suppression (at 7.8s).
 - Immediate RMP ramp for maintaining favorable wide pedestal. → RT-Adaptive control is effective.

- Adaptive ELM control using RMPs \rightarrow Successful control convergence due to decreasing $I_{\text{RMP,IN}}$.
- Widened ion pedestal and increased pedestal response → Enhanced pedestal recovery.
- Enhanced confinement recovery and field amplification \rightarrow Decreases $I_{\text{RMP,IN}}$.
- Origin of widened ion pedestal → Possibly, turbulence.
- Pedestal widening in other device
- Conclusion

New adaptive ELM control in DII-D exhibits long ELM-free state with very low RMP strength, beating the previous 3D control record

- Confinement recovery with new adaptive control
 - ✓ <u>Feedback</u> lower *I*_{RMP} boundary
 - Achieving high confinement exceeding the previous control record.
 - ✓ Enhanced recovery
 - Significant $\beta_{\rm N}$ recovery $I_{\rm RMP}\downarrow$.

Profile shows that adaptive control and enhanced confinement recovery followed by wider pedestal

Pedestal Enhanced confinement recovery • 3.2 5 kARecovered ✓ Pedestal broadening region 2.4 Strong in ion and weaker in electron pedestal. ٠ $T_{\rm e}$ [keV] - More stable pedestal and higher confinement. 1.6 0.8 6.5 kA #190736 ^{.767} .508 280 **D**α Recovery q95~3.4 (1.6MA / 1.96T) llut. 0.0 0.65 0.75 0.85 0.95 ψ_{N} 1622 **I**_{RMP} $\beta_{\rm N}$ Ion pedestal broadening $\int_{0.33}^{1000} T_{e,ped}$ T_i (keV) n_{e,ped} 2 , •••• **P**_{e,ped} 0.0 0.2 0.4 0.6 0.8 1.0 2000 3000 5000 4000 WΝ Time [ms]

During enhanced phase

- Adaptive ELM control using RMPs \rightarrow Successful control convergence due to decreasing $I_{\text{RMP,IN}}$.
- Widened ion pedestal and increased pedestal response → Enhanced pedestal recovery.
- Enhanced confinement recovery and field amplification \rightarrow Decreases $I_{\text{RMP,IN}}$.
- Origin of widened ion pedestal → Possibly, turbulence.
- Pedestal widening in other device → Seems consistent.
- Conclusion

Adaptive ELM control paves new strategy to optimize the pedestal via 3D field, revealing new physics of edge-turbulence and its favorable aspects.

- Successful demonstration of adaptive ELM control in KSTAR
 - $\checkmark\,$ ELM-free state with optimized confinement.
- Widened ion pedestal plays key role in control optimization.
 - $\checkmark\,$ Boosted recovery and better convergence.
- RMP-induced ion-scale turbulence highly correlates to ion pedestal
 - $\checkmark\,$ Similar trend in fluctuation and ion transport.
- Adaptive scheme is an effective way to utilize its favorable effect
 - ✓ Immediate RMP ramp to sustain the turbulence and wide pedestal.

Mechanical and

Aerospace

Engineering

Thank you

Princeton Plasma Control **control.princeton.edu**

