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RMPs are promising method to stabilize the ELM crash, however there is

remaining challenges for its application on ITER or future devices

e Challenges in ELM control via RMP

v’ Less sustainability by small window.
v Loss of plasma confinement.

* Real-time pedestal optimization with ELM control

Standard ELM-free

Optimized ELM-free
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* Key of successful pedestal optimization

v’ lon pedestal widening 1.0 ' -
* In ELM-suppressed state. ELMy with RMP
v" Contribution to adaptive control '~~T§+ l

e Stronger confinement recovery (>50%)

e

- 0-5 Fe : N
* Faster control convergence. = * *‘r—*—'—\

B~

» This talk introduces...

- Principle of adaptive control.
- Role of widened ion-pedestal. 0.8 0.9
- Origin of pedestal widening. ¢N

ELM-free with RMP

1.0

[lon pedestal widening in ELM-free state]
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* Adaptive ELM control using RMPs
 Widened ion pedestal and increased pedestal response
* Enhanced pedestal recovery and field amplification

* Origin of widened ion pedestal
* Pedestal widening in another device

e Conclusion



* RMP-hysteresis on confinement recovery

v" Hysteresis in RMP-ELM suppression

" Irwpin 2 Trmpour- KSTAR #25613
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[RMP hysteresis at KSTAR, #25613]
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Adaptive ELM control relies on simple concept, initiated from DIII-D and

further demonstrated in KSTAR

* Adaptive ELM control using RMPs

v' Igmp control with ELM detection [R. Shousha, APS-DPP 21]

c ELMy O Ipyp 1.
* ELM-free » IRMP L.

v" Previous real-time ELM control

* |Initiated from DIII-D [F. Laggner, NF 20].
* Preliminary trial with prescribed control boundary. Time
. Effective confinement recovery. [Schematic of adaptive ELM control]

Further demonstration in KSTAR with
more adaptive scheme
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Adaptive ELM control successfully optimizes the RMP level, maximizing the

confinement recovery while maintaining ELM suppression

* ELM suppression in KSTAR with adaptive ELM control

v" Recovered initial Hgg loss up to 60% (G = HggﬁN/q(Z,S, 45%).
v" Fast convergence within 4 iterations (~5 s).
v Well sustained ELM suppression.

KSTAR #26004
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Successful control convergence is due to weakened discontinuity of

RMP-hysteresis: Easier re-access to the ELM suppression

KSTAR #26004
. . 1.0

* Changes in Igmp n/ouT during control

v’ Igmpn: 4.6 — 3.5 KA (dominant). ';' ]

v IRMP,OUT: 3.3 - 3.5 KA. =, 0.5-

. . . a
‘/ DISCOhtInUIty |IRMP,IN - IRMP,OUTl ~L. E ‘ f
~ v il Irmp,ouT|, |-
. LT JNuﬂvﬂﬂuﬁh*wﬂuﬁ*Uﬂﬂhhwhq
* Effect of decreasing Irmp N 0.0-MEIEL . ) 3 . |
g 5 6 7 8 9 10 11
v’ Easier re-suppression. Time [s]
v' Fast convergence and short ELMy period. [Overview of discharge #26004]
A With constant IrmpIN 4  With decreasing Ipyp 1y

. Focusing on profile dynamics in 1t iteration.

Irmp out

_eLvs B IR I

[Effect of decreasing Ixyp ;n ON control convergence]
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* Adaptive ELM control using RMPs - Successful control convergence due to decreasing Iyyp -
 Widened ion pedestal and increased pedestal response
* Enhanced pedestal recovery and field amplification

* Origin of widened ion pedestal
* Pedestal widening in other device

e Conclusion



During ELM suppression periods, ion pedestal shows wider structure than

ELMy phase.

* Widening of ion pedestal >-3 y 6.3 S/x/
oy RMP
v lon pedestal trace. 3 05¢ ]

e 5326.3-2>: ELMy, IRMP T.

- Decreasing height. 0.0
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[Time trace of ion radial profiles, #26004] ¢N
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During ELM suppression periods, ion pedestal shows wider structure than

ELMy phase.

* Widening of ion pedestal I 6.3 v 6.6
=y RMP ‘
v’ lon pedestal trace. 2 05 715

e 5326.3-2>: ELMy, IRMP T.

- Decreasing height. 0.0

5 6 8

6.6 > 7.1s : ELM-free Time [s]

- Saturation with increasing width. 1.0 '

(Decreased gradient) 6.3s (ELMy,4.1 kA)

Broaden

T; [keV]
o
(9]
|

6.6 (ELM-free, 5.5 kA)
7.1s (ELM-free, 5.5 kA)
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[Time trace of ion radial profiles, #26004] ¢N




During ELM suppression periods, ion pedestal shows wider structure than

ELMy phase.

* Widening of ion pedestal
v’ lon pedestal trace. g 0.5}
e 5326.3-2>: ELMy, IRMP T.
- Decreasing height. 0.0
5 6
* 6.6 > 7.1s: ELM-free Time [s]
- Saturation with increasing width. 1.0 - éLM A
(Decreased gradient) . { + 5.3s ( y,0 kA)
I
e 2>7.1s>7.7s: ELM-free, IRMP l. — + 4 }
- Increasing pedestal height/width. e
. = 0.5 !
(Same gradient) - o :
B~ \
- Wider lon pedestal during ELM-free state. (7.1s (ELM-free, 5.5 kA) .
7.7s (ELM-free, 3.5 kA) Increasing
0.0 . ' :
0.8 0.9 1.0
PN
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v’ Variation of pedestal height to RMP (h' = —dh/dIgymp) c

3 Ramp-up phase 7.1down 7.7

10 | < _ o h——
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[Time trace of pedestal height , #26004] IRMP [kA]
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* Pedestal recovery during ramp-down 041 =3 s Higher
= ; . pedestal ,
v" Increased limit (Pedestal height: B, ;¢q) o :
Bp.ped < 70 % PBM limit: ELM free. g
*  Wider ion pedestal = Enhanced limit [ 1. o
* Higher pedestal with ELM-free.

v' Faster recovery with Igyp |

* larger T'j jeq and ') peq in ELM-free.
* Higher pedestal than ELMy for “same” RMP. Decreasing RMP |
< 0.3+ L"“u.\ ( ** (Supp.) -
Y

‘ Enhanced pedestal recovery during % -

ELM-free state by wider pedestal. < 0.2} T -
Y P 0.2 Increasing RMP **
| @ ELMy (ELMy) Sk’ )
0.1 * ELM-free _ . _

0 2 4 6

[Trace of pedestal limit and height , #26004] Ipmp kA
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* Adaptive ELM control using RMPs - Successful control convergence due to decreasing Iyyp -
 Widened ion pedestal and increased pedestal response - Enhanced pedestal recovery.
* Enhanced confinement recovery and field amplification

* Origin of widened ion pedestal
* Pedestal widening in other device

e Conclusion



Ramp-down

. 5.3s) 7. 15,(—)‘
* Confinement recovery by RMP ramp-down 1.0 —
1 e
I o VAl
v' Confinement (Hq4g) recovery by pedestal 1 —_ i < .....-’"",b<
> -
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[Time traces of H98, #26004]
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Shot comparison clearly shows that “boosted” confinement recovery is

outcome of widened ion pedestal

 Recovery without pedestal broadening
v Without wider ion-pedestal

* If no ion-pedestal widening
- No favorable state during ELM-free.

v Reduced confinement recovery

* No boosted or bonus recovery.

- Boosted recovery by widened ion pedestal.

0.6 1 ew=n. ...
— § ------------ <3
> .
2 0.3 - 555 (ELMy, L9 kA) \
= | = 6.2s (ELMy, 3.2 kA)

- 6.7s (ELM-free, 3.2 kA)
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0.0 T
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[Time traces of ion pedestal, #28393]
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* ELM-free recovery only
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[Traces of By vs Ixyp, #28393] Ipmp kA




Enhanced pedestal recovery amplifies the RMP response, resulting in easier

ELM suppression re-entrance with smaller RMP current

* Decreased Igyp n for ELM suppression @ ELMy k ELM-suppressed
04 KSTAR #26004, 6B,

* Perturbed field (6B,) by Ixyp. oF l"‘eslfjion
* Suppression for B, > 8By, [).-K.Park 18]. SNO
* OBy = 20 G in experiment. = Red line.

v’ Suppression entry threshold (6B, ;)

[G]

v Amplified 6B, by ﬁp,ped

ﬁﬂmped

* Same 6B, with smaller Igyp.
* Larger By peq at re-suppression.

* IRMP,IN : 4.6 9 3.6 kA.

Ramrm \

4.6 > 3.6 KA |~—|

- Igrmp i | by wider ion pedestal. IPEC

I'gmp [kA]

[Time traces of pedestal, #26004]
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Overall, widened ion pedestal facilitate the adaptive ELM control method by

boosting the confinement hysteresis and reducing the system discontinuity

e Overall effect of ion pedestal broadening on adaptive ELM control

Fast and stable control

Standard pedestal recovery By Plasma|response

Easier re-ELM
suppression

Larger pedestal Larger 6B,
recovery at pedestal

Adaptive Minimize Pedestal
ELM control Ipmp recovery

By RMP-induced transport

Higher
ﬁp,ped,limit

—— o e e o o

Larger Strong and fast

Afppea/Alrmp ! confinement optimization




* Adaptive ELM control using RMPs - Successful control convergence due to decreasing Iyyp -
 Widened ion pedestal and increased pedestal response - Enhanced pedestal recovery.
* Enhanced confinement recovery and field amplification > Decreases Izyp x-

* Origin of widened ion pedestal
* Pedestal widening in other device

e Conclusion



Interpretive analysis suggests that ion pedestal broadening can be an outcome

of increased heat transport during ELM suppression phase

1.0 .
. . . . 5.3s (ELMy, 0 kA
* Origin of widened ion pedestal — {4, 63s fELmz, 4.1 k)A)
v RMP-induced transport in ELM-suppression = P— ; :
 ELMy : No effective change. % 0.5 F— —
* ELM-free (>6.6s): Increased y; at pedestal. b oy
-> Decreased pedestal gradient and broadening. ggz gzgg’ gg ::ﬁ;
7.7s (Supp., 3.5 kA)
0.0 -
0.8 0.9 / 1.0
v' Distinguished properties of RMP-induced transport 10 YN
* Occurrence at ELM-free state. 3 gg: %Etmz’ 2 IYL)A)
* No proportionality on I'gyp during ELM-free. — 6.6s (Supp., 5.5 kA)
- Sustained pedestal gradient with I'gyp J. ~ 6 ;;: gzgg: gg mg
= ab NN Nl e
. Additional transport mechanism may be required ) 5 '
to explain pedestal gradient behavior. | e LM
(in addition to classical transport) 0 - ' Y
0.92 0.94 0.96 0.98 1.00

[Time traces of ion profile and diffusivity] 1IJN
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Immediate occurrence of edge turbulence is observed after entering

ELM suppression

o N i
e Occurrence of fluctuations Z |
d o)
v' Measured fluctuation > 0.1 3
o
 Immediate occurrence at ELM-free. § 5
* ECEI (8T,), BES (6n.), Mirnov (6B,,,) and CSS. &
w 0. 0
= 0. 1
* Properties of edge turbulence = .
_ o
>
v’ Frequency range 2 0.1 §
>
« 68T, and 6n, : 30-80 kHz (longer, kp, < 0. 3). qg; B
* 8B, and CSS: 200-400 kHz (shorter, kp; > 1). &= 0.0 0
, -2
- More than one different fluctuations. N 0-4g 10
=,
9
c
(V]
=
(o n
w080 65 5 go 107

[Time traces of measured fluctuations] Time [s]
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Edge localized fluctuation exhibits similar trends with ion diffusivity,

suggesting the ion-scale turbulence as a main contributor to pedestal widening

* Properties of edge turbulence OMe imue«;ﬁ"r “
0

v’ Radial range
e O0T.anddn,:yy>0.9.

* Correlation of edge turbulence with I'pmp

v No reduction by Igyp .

e Same for ion diffusivity.
- Suggesting it as a main contributor.

v Rapidly decreasing with losing suppression (at 7.8s) . o ' !
: [ ' ' 1
oT, i ELM suppression | ||

* Immediate RMP ramp for maintaining favorable wide
pedestal. = RT-Adaptive control is effective.

re

5B, :‘ No decreasing ,

Coherence Amp.
o
(%]

o
o

[ 1 1 ]
6.0 6.5 7.0 7.5 8.0
[Time traces of measured fluctuations] Time [s]
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* Adaptive ELM control using RMPs - Successful control convergence due to decreasing Iyyp -
 Widened ion pedestal and increased pedestal response - Enhanced pedestal recovery.
* Enhanced confinement recovery and field amplification > Decreases Izyp x-

* Origin of widened ion pedestal > Possibly, turbulence.
* Pedestal widening in other device

e Conclusion



* Confinement recovery with new adaptive control
Dill-D

v’ Feedback lower Izyp boundary
NATIONAL FUSION FACILITY
* Achieving high confinement exceeding the previous control record. SAN DIEGO

v' Enhanced recovery
 Significant By recovery Igyp .
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wider pedestal

. During enhanced phase
* Enhanced confinement recovery 3.2 T p— ]
. ecovere
v’ Pedestal broadening 2al region 4

e Strong in ion and weaker in electron pedestal.
- More stable pedestal and higher confinement.
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* Adaptive ELM control using RMPs - Successful control convergence due to decreasing Iyyp -
 Widened ion pedestal and increased pedestal response - Enhanced pedestal recovery.
* Enhanced confinement recovery and field amplification > Decreases Izyp x-

* Origin of widened ion pedestal > Possibly, turbulence.
* Pedestal widening in other device - Seems consistent.

e Conclusion



Adaptive ELM control paves new strategy to optimize the pedestal via 3D field,

revealing new physics of edge-turbulence and its favorable aspects.

e Successful demonstration of adaptive ELM control in KSTAR

v' ELM-free state with optimized confinement.

 Widened ion pedestal plays key role in control optimization.

v’ Boosted recovery and better convergence.

* RMP-induced ion-scale turbulence highly correlates to ion pedestal

v" Similar trend in fluctuation and ion transport.

* Adaptive scheme is an effective way to utilize its favorable effect

v" Immediate RMP ramp to sustain the turbulence and wide pedestal.

[More details in S.K.Kim et al., NF 62, 026043
/ R. Shousha et al., POP 29, 032514 ]
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