

Kinetic Ballooning Mode Constraints in NSTX Pedestals

J. F. Parisi, W. Guttenfelder, A. O. Nelson, A. Kleiner, C. Clauser

Oct 31 2022

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Outline

Part I: Stability

Part II: Transport

Part I: Stability

Hypothesis: Kinetic Ballooning Mode (KBM) thresholds predict pedestal height and width ∇p constraint for NSTX

• KBM = ideal ∇p -driven ballooning + kinetic physics.

- KBM = ideal ∇p -driven ballooning + kinetic physics.
- KBM stability threshold lower than ideal MHD mode.

Fig 1: Schematic instability growth rate versus β . Adapted from Fig 1.2 [Snyder Thesis, 1999]

- KBM = ideal ∇p -driven ballooning + kinetic physics.
- KBM stability threshold **lower** than ideal MHD mode.
- KBM signatures:

 $\chi_i/\chi_e \sim 1$ (ion/electron heat diffusivity ratio)

 $D_{\rho}/\chi_{\rho} \sim 1$ (particle, heat diffusivity ratio)

Growth rate γ sensitive to ∇T_i and ∇T_o ⁷

- KBM = ideal ∇p -driven ballooning + kinetic physics.
- KBM stability threshold **lower** than ideal MHD mode.
- Basis for EPED model: β_{pedestal} builds up in ELM cycle, KBM transport stiff —> KBM sets maximum ∇p .

Fig 1: Schematic instability growth rate versus β . Adapted from Fig 1.2 [Snyder Thesis, 1999]

- KBM = ideal ∇p -driven ballooning + kinetic physics.
- KBM stability threshold **lower** than ideal MHD mode.
- Basis for EPED model: β_{pedestal} builds up in ELM cycle, KBM transport stiff —> KBM sets maximum ∇p .
- We find important differences b/w KBM and ideal stability in NSTX.

Fig 1: Schematic instability growth rate versus β . Adapted from Fig 1.2 [Snyder Thesis, 1999]

 Recent work [Guttenfelder, 2022] shows NSTX experimental profiles within 10% of KBM critical gradient $\alpha_{\text{KBM,crit}}$

Fig 1: NSTX α profiles and critical KBM α values. Adapted from W. Guttenfelder APS 2022.

• Recent work [Guttenfelder, 2022] shows NSTX experimental profiles within 10% of KBM critical gradient $\alpha_{\text{KBM,crit}}$

• Related important topic: non-ideal peeling ballooning modes. See A. Kleiner [NF 2021, 2022] (resistive effects important).

Fig 1: NSTX α profiles and critical KBM α values. Adapted from W. Guttenfelder APS 2022.

Why:

EPED ∇p prediction successful in many devices, not sufficient for all NSTX discharges.*

Why: ∇p prediction successful in many devices EPED

discharges. Adapted from Fig 2 [Snyder, NF, 2009] 13

$\beta_{\theta,\text{ped}} = 2\mu_0 p_{\text{ped}} / B_{\theta}^2$

Why: EPED ∇p prediction successful in many devices, not sufficient for all NSTX discharges.*

Fig 1: Pedestal width versus $\sqrt{\beta_{\theta,\text{ped}}}$ for DIIID

discharges. Adapted from Fig 2 [Snyder, NF, 2009]14

$\beta_{\theta,\text{ped}} = 2\mu_0 p_{\text{ped}} / B_{\theta}^2$

 $\beta_{\theta,\text{ped}} = 2\mu_0 p_{\text{ped}} / B_{\theta}^2$

BCP (Conventional-A): $\Delta \sim \beta_{\theta,\text{ped}}^{1/2}$

 $\beta_{\theta,\text{ped}} = 2\mu_0 p_{\text{ped}} / B_{\theta}^2$

BCP (Conventional-A): $\Delta \sim \beta_{\theta,\text{ped}}^{1/2}$

BCP (Low-A): $\Delta \sim \beta_{\theta,\text{ped}}^{0.74}$

 $\beta_{\theta,\text{ped}} = 2\mu_0 p_{\text{ped}} / B_{\theta}^2$

BCP (Conventional-A): $\Delta \sim \beta_{\theta,\text{ped}}^{1/2}$

BCP (Low-A): $\Delta \sim \beta_{\theta,\text{ped}}^{0.74}$

ELMy NSTX

 $\beta_{\theta,\text{ped}} = 2\mu_0 p_{\text{ped}} / B_{\theta}^2$

BCP (Conventional-A): $\Delta \sim \beta_{\theta,\text{ped}}^{1/2}$

BCP (Low-A): $\Delta \sim \beta_{\theta,\text{ped}}^{0.74}$

ELMy NSTX: $\Delta \sim \beta_{\theta,\text{ped}}^{1.05}$

 $\beta_{\theta,\text{ped}} = 2\mu_0 p_{\text{ped}} / B_{\theta}^2$

BCP for low-A partially recovers ELMy NSTX scaling.

 $\beta_{\theta,\text{ped}} = 2\mu_0 p_{\text{ped}} / B_{\theta}^2$

BCP for low-A partially recovers ELMy NSTX scaling. ELM-free NSTX discharges deviate from scalings [Maingi 2015, JNM].

 $\beta_{\theta,\text{ped}} = 2\mu_0 p_{\text{ped}} / B_{\theta}^2$

BCP for low-A partially recovers ELMy NSTX scaling. ELM-free NSTX discharges deviate from scalings [Maingi 2015, JNM]. Important for NSTX-U and future ST reactors.

 $\beta_{\theta,\text{ped}} = 2\mu_0 p_{\text{ped}} / B_{\theta}^2$

EPED Ballooning Critical Pedestal (BCP)

Hypothesis: KBM thresholds predict pedestal height and width ∇p constraint for NSTX **Measure of success:**

KBM reproduces height width scaling found for NSTX experiments: $\Delta_{\rm ped} = (0.4 \pm 0.1)(\beta_{\theta,\rm ped})^{1.05 \pm 0.2}$

 $\beta_{\theta,\text{ped}} = 2\mu_0 p_{\text{ped}} / B_{\theta}^2$

Hypothesis: KBM thresholds predict pedestal height and width ∇p constraint for NSTX Why: EPED ∇p prediction successful in many devices, not sufficient for all NSTX discharges.* **Important** because pedestal height p_{ped} and width Δ_{ped} useful for $nT\tau_E$, fusion gain Q.

Hypothesis: KBM thresholds predict pedestal height and width ∇p constraint for NSTX Why: EPED ∇p prediction successful in many devices, not sufficient for all NSTX discharges.* **Important** because pedestal height p_{ped} and width Δ_{ped} useful for $nT\tau_E$, fusion gain Q.

$T_{e,\text{ped}}/T_{e,\text{ped}}^{(\text{EPED})}$	1.0	0.67	0.5
Modelled Q	9.0	5.1	3.0

Table 1: Adapted from [Hughes 2020, JPP, Energy gain Q for three different $T_{e,\text{ped}}/T_{e,\text{ped}}^{\text{EPED}}$ values for SPARC.

Hypothesis: KBM thresholds predict pedestal height and width ∇p constraint for NSTX Why: EPED ∇p prediction successful in many devices, not sufficient for all NSTX discharges.* **Important** because pedestal height p_{ped} and width Δ_{ped} useful for $nT\tau_E$, fusion gain Q.

$T_{e,\text{ped}}/T_{e,\text{ped}}^{(\text{EPED})}$	1.0	0.67	0.5
Modelled Q	9.0	5.1	3.0

Table 1: Adapted from [Hughes 2020, JPP, Energy gain Q for three different $T_{e,\text{ped}}/T_{e,\text{ped}}^{\text{EPED}}$ values for SPARC.

SPARC Q predicted to decrease 3x with 50% pedestal degradation

large reactor design uncertainty

Why:

What:

Use linear gyrokinetics to scan in self-consistent equilibria with varying $p_{
m ped}$, $\Delta_{
m ped}$ to determine stability boundaries. EPED-inspired, adding non-ideal physics.

EPED ∇p prediction successful in many devices, not sufficient for all NSTX discharges.* **Important** because pedestal height p_{ped} and width Δ_{ped} useful for $nT\tau_E$, fusion gain Q.

Use linear gyrokinetics to scan in self-consistent equilibria with varying $p_{\rm ped}$, $\Delta_{
m ped}$ to determine stability boundaries. EPED-inspired, adding non-ideal physics.

Fig 1: Pedestal height versus width for a DIIID discharge. Adapted from Fig 5 [Snyder, $\mathbf{NF}, \mathbf{2009}$

EPED evaluates ideal ballooning critical pedestal (BCP) constraint for model equilibria on a height, width grid.

Use linear gyrokinetics to scan in self-consistent equilibria with varying $p_{\rm ped}$, $\Delta_{\rm ped}$ to determine stability boundaries. EPED-inspired, adding non-ideal physics.

Fig 1: Pedestal height versus width for a DIIID discharge. Adapted from Fig 5 [Snyder, NF, 2009]

Our goal:

Take EPED-like height-width grid, run gyrokinetics.

Use linear gyrokinetics to scan in self-consistent equilibria with varying $p_{\rm ped}$, $\Delta_{\rm ped}$ to determine stability boundaries. EPED-inspired, adding non-ideal physics.

Starting from experiment, we vary equilibria self-consistently in height, width space.

Fig 1: Pedestal height versus width for a DIIID discharge. *Adapted from Fig 5* [Snyder, NF, 2009]

Use linear gyrokinetics to scan in self-consistent equilibria with varying $p_{\rm ped}$, $\Delta_{\rm ped}$ to determine stability boundaries. EPED-inspired, adding non-ideal physics.

Starting from experiment, we vary equilibria self-consistently in height, width space.

Run linear gyrokinetic simulations [Snyder, NF, 2009] for each equilibrium

Use linear gyrokinetics to scan in self-consistent equilibria with varying $p_{
m ped}$, $\Delta_{
m ped}$ to determine stability boundaries. EPED-inspired, adding non-ideal physics.

unstable stable Starting from experiment, we Pedestal Height (p_{ped}, kPa) vary equilibria self-consistently 15 in height, width space. 10 Run linear gyrokinetic simulations 5 0.00 0.02 0.04 0.06 80.0 Pedestal Width (\triangle)

Snyder, NF, 2009 for each equilibrium

Use linear gyrokinetics to scan in self-consistent equilibria with varying $p_{
m ped}$, $\Delta_{
m ped}$ to determine stability boundaries. EPED-inspired, adding non-ideal physics.

Starting from experiment, we vary equilibria self-consistently in height, width space.

Run linear gyrokinetic simulations **|Snyder, NF, 2009** for each equilibrium, determine gyrokinetic critical pedestal (GCP) stability constraint.

Finding the Gyrokinetic Critical Pedestal (GCP)

Construct $p_{\text{ped}}, \Delta_{\text{ped}}$ grid

Finding the Gyrokinetic Critical Pedestal (GCP)

Construct p_{ped} , Δ_{ped} grid

Self-consistent NSTX equilibria across a range of pedestal widths and heights.

Finding the Gyrokinetic Critical Pedestal (GCP) Set up radial grid across full pedestal

= location of CGRO simulation

× × × × х × × Х × [kPa] × * X X Х × × × \times \times Х Х $p_{
m ped}$ × X 0.00 0.02 0.04 0.08 0.10 0.12 0.06 $\Delta_{\mathrm{ped}} \left[\psi_N \right]$

= location of CGRO simulation

instability —> pedestal GCP unstable

pedestal half-width

If all modes across half-width are unstable to same

Finding the Gyrokinetic Critical Pedestal (GCP) Pedestal Height Scan

Finding the Gyrokinetic Critical Pedestal (GCP) Pedestal Height Scan

Finding the Gyrokinetic Critical Pedestal (GCP) Pedestal Width Scan

Finding the Gyrokinetic Critical Pedestal (GCP) Pedestal Height Scan

Finding the Gyrokinetic Critical Pedestal (GCP) Pedestal Height Scan Base case NSTX 132543 pressure profile

Finding the Gyrokinetic Critical Pedestal (GCP) Pedestal Height Scan

1.6 $\times p_{\text{ped}}$ rescaling

Finding the Gyrokinetic Critical Pedestal (GCP) Pedestal Height Scan **0.4** \times p_{ped} rescaling

Finding the Gyrokinetic Critical Pedestal (GCP) **Pedestal Height Scan** rescale $\alpha \longrightarrow$ KBM stability changes

• α versus r/a for NSTX 132543 equilibrium.

 $\Delta_{\rm ped} = 0.07$, $k_y \rho_i = 0.12$

 $\alpha = -q^2 \mu_0 R \nabla P / B^2$

48

• α versus r/a for NSTX 132543 equilibrium.

• α versus r/a for NSTX 132543 equilibrium.

• KBM unstable?

 $\Delta_{\rm ped} = 0.07$, $k_y \rho_i = 0.12$

 $\alpha = -q^2 \mu_0 R \nabla P / B^2$

50

• α versus r/a for NSTX 132543 equilibrium.

• Pedestal GCP unstable to **KBM!**

 $\Delta_{\rm ped} = 0.07$, $k_u \rho_i = 0.12$

Finding the Gyrokinetic Critical Pedestal (GCP) **Pedestal Pressure Buildup**

- α versus r/a for NSTX 132543 equilibrium.
- Add larger p_{ped} profile.

 $\Delta_{\rm ped} = 0.07$, $k_u \rho_i = 0.12$

Finding the Gyrokinetic Critical Pedestal (GCP) **Pedestal Pressure Buildup**

- α versus r/a for NSTX 132543 equilibrium.
- Add larger p_{ped} profile.
- Both profiles GCP unstable to KBM.

Finding the Gyrokinetic Critical Pedestal (GCP) **Pedestal Pressure Buildup**

- α versus r/a for NSTX 132543 equilibrium.
- Add larger p_{ped} profile.
- Both profiles GCP unstable to KBM.
- Add smaller p_{ped} profile.
- Smaller p_{ped} GCP stable.

 $\Delta_{\rm ped} = 0.07$, $k_v \rho_i = 0.12$

 KBM stability from CGYRO gyrokinetic calculation for NSTX discharge 132543.

NSTX 132543 Constant T

		× KBM stable		× k	(BM unstab	le					
0.14	-										
0.12	×		×	×	×	×	×	×			
0.10	×		×	×	×	×	×	×			
0.08	×		×	×	×	×	×	×			
0.06	×		×	×	*	×	×	×			
	×		×	×	×	×	×	×			
0.04	×		×	×	×	×	×	×			
0.02	×		×	×	×						
0.00	0 0.1			0.2		0.3	0.	4			
	$\beta_{ heta,\mathrm{ped}}$										

- KBM stability from CGYRO gyrokinetic calculation for NSTX discharge 132543.
- Experimental point

NSTX 132543 Constant T

		× KBM stable		×	× KBM unstable					
0.14	_									
0.12	×	: ×	× ×	<	× >	< ×	×			
0.10	×	×	×	>	× ×	×	×			
0.08	×	×	×	×	×	×	×			
0.06	×	×	X	*	×	×	×			
0.00	×	×	×	×	×	×	×			
0.04	- ×	×	×	×	×	×	×			
0.02	×	×	×	×						
0.00	.0 0.1		0.2		0.3	0	.4			
	$\beta_{ heta,\mathrm{ped}}$									

 $\Delta_{\text{ped}} [\psi_N]$

• KBM stability from CGYRO gyrokinetic calculation for NSTX discharge 132543.

NSTX 132543 Constant T

• Clear KBM stability boundary.

NSTX 132543 Constant T

• Clear KBM stability boundary.

 Ideal ballooning stability from BALOO calculation.

NSTX 132543 Constant T

 Ideal ballooning stability from BALOO calculation.

- Ideal ballooning stability from BALOO calculation.
- Second stable region: we count as stable.

- Ideal ballooning stability from BALOO calculation.
- Ideal stability criteria identical to GCP: all half-width points ideal unstable.

- Ideal ballooning stability from BALOO calculation.
- Clear ideal stability boundary.

NSTX 132543 Constant T

Kinetic, Ideal Comparison

• KBM has lower pressure gradient stability boundary.

NSTX 132543 Constant T

Kinetic, Ideal Comparison

- KBM has lower pressure gradient stability boundary.
- Region where ideal stable, but kinetic unstable.

Constant T

• Both kinetic and ideal boundaries far from conventional-A BCP:

 $\Delta \sim \beta_{\theta, \text{ped}}^{1/2}$.

 Δ_{ped} [ψ_N]

- Both kinetic and ideal boundaries far from standard aspect ratio EPED: $\Delta \sim \beta_{\theta,\text{ped}}^{1/2}$.
- Ideal boundary fit: $\Delta = 0.24 \beta_{\theta,\text{ped}}^{0}$ 0.97

NSTX 132543 Constant T

- Both kinetic and ideal boundaries far from standard aspect ratio EPED: $\Delta \sim \beta_{\theta,\text{ped}}^{1/2}$.
- Ideal boundary fit: $\Delta = 0.24 \beta_{\theta,\text{ped}}^{0.97}.$
- Kinetic boundary fit: 0.82 $\Delta = 0.28\beta_{\rm c}$

 $\Delta_{
m ped} \left[\psi_N
ight]$

• Perform same exercise with pressure varied with **constant n**.

- Perform same exercise with pressure varied with **constant n**.
- Ideal boundary fit: $\Delta = 0.27 \beta_{\theta, \text{ped}}^{1}$ 1.10
- Kinetic boundary fit: 0.99 $\Delta = 0.33\beta_{\theta}$

• Significant difference between ideal and kinetic scaling.

Kinetic, Ideal Comparison $\Delta = \alpha(\beta_{\theta, \text{ped}})^{\beta} \text{ Scaling Law}$

• Significant difference between ideal and kinetic scaling.

Kinetic, Ideal Comparison $\Delta = \alpha(\beta_{\theta,\text{ped}})^{\beta} \text{ Scaling Law}$

 Ideal scalings tend to over-predict pedestal height.

Kinetic, Ideal Comparison $\Delta = \alpha(\beta_{\theta,\text{ped}})^{\beta} \text{ Scaling Law}$

- Ideal scalings tend to over-predict pedestal height.
- Kinetic boundary closer
 to NSTX experiment.

 $\Delta_{\mathrm{ped}}[\Psi_N]$

KBM scaling at constant n, consistent with NSTX experiment.

KBM scaling at constant n, consistent with NSTX experiment.

Ideal scaling ~inconsistent.

KBM scaling at constant n, consistent with NSTX experiment.

Ideal scaling ~inconsistent.

 \longrightarrow kinetic physics important for NSTX pedestal prediction.

KBM constant n consistent.

KBM constant T ~inconsistent.

 $\sum_{\text{ped}} [\Psi_N]$

Important caveat: No errorbars for our KBM/ideal scalings, so possible ideal scaling also consistent.

 $\operatorname{ped}\left[\Psi_{N}\right]$

• Recall: for a pedestal to be 'unstable', 100% of radial locations in pedestal halfwidth to be KBM/ideal unstable.

- Recall: for a pedestal to be 'unstable', 100% of radial locations in pedestal halfwidth to be KBM/ideal unstable.
- What if we relaxed this criterion?

- Recall: for a pedestal to be 'unstable',
 100% of radial locations in pedestal halfwidth to be KBM/ideal unstable.
- Generalizing criterion to xx% of radial locations unstable, we measure error between GCP/BCP scaling and experiment.

- Recall: for a pedestal to be 'unstable', 100% of radial locations in pedestal halfwidth to be KBM/ideal unstable.
- Generalizing criterion to xx% of radial locations unstable, we measure error between GCP/BCP scaling and experiment.
- Find:

1) KBM Δ scaling improves as $xx \rightarrow 100\%$

Fig: Mean squared error versus % of modes needed to trigger BCP/GCP. Error calculated from theory and ELMy NSTX experiments.

- Recall: for a pedestal to be 'unstable', 100% of radial locations in pedestal halfwidth to be KBM/ideal unstable.
- Generalizing criterion to xx% of radial locations unstable, we measure error between GCP/BCP scaling and experiment.
- Find:

1) KBM Δ scaling improves as $xx \rightarrow 100\%$ 2) ideal Δ scaling degrades as $xx \rightarrow 100\%$

Fig: Mean squared error versus % of modes needed to trigger BCP/GCP. Error calculated from theory and ELMy NSTX experiments.

occurs because ideal overpredicts NSTX p_{ped}

Fig: Mean squared error versus % of modes needed to trigger BCP/GCP. Error calculated from theory and ELMy NSTX experiments.

Wide Pedestal KBM Scaling

 ELM-free lithiated NSTX discharges can have wider, higher pedestals [Maingi, 2015, 2017].

Wide Pedestal KBM Scaling

- ELM-free lithiated NSTX discharges can have wider, higher pedestals [Maingi, 2015, 2017].
- KBM GCP for NSTX 132588 gives weaker Δ scaling, likely within experimental uncertainty.

Part I Summary

• Original hypothesis: KBM can predict pedestal height and width ∇p constraint for NSTX.

Part I Summary

- Original hypothesis: KBM can predict pedestal height and width ∇p constraint for NSTX.
- **Conclusion:** KBM with self-consistently varied equilibria starting from experiment gives $\Delta \sim \beta_{\theta, \text{ped}}$, agreement!

Part I Summary

- Original hypothesis: KBM can predict pedestal height and width ∇p constraint for NSTX.
- Conclusion: KBM with self-consistently varied equilibria starting from experiment gives $\Delta \sim \beta_{\theta, \text{ped}}$, agreement!
- Good news: ideal ballooning stability with sufficient equilibrium information *might* be good enough for future ST devices.

Part II: Transport

• We care about transport in vicinity of pedestal stability boundary.

• We care about transport in vicinity of pedestal stability boundary.

• We care about transport in vicinity of pedestal stability boundary.

Accessible equilibria during pedestal buildup

• We care about transport in vicinity of pedestal stability boundary.

Accessible equilibria during pedestal buildup

Inaccessible equilibria?...

- We care about transport in vicinity of pedestal stability boundary.
- Linear gyrokinetic simulations give turbulent diffusive ratios.

Accessible equilibria during pedestal buildup

Inaccessible equilibria?...

- We care about transport in vicinity of pedestal stability boundary.
- Linear gyrokinetic simulations give turbulent diffusive ratios.
- Expect KBM-constrained pedestal sits at maximal values of D_e/χ_e , χ_i/χ_e .

 \rightarrow

- We care about transport in vicinity of pedestal stability boundary.
- Linear gyrokinetic simulations give turbulent diffusive ratios.
- Expect KBM-constrained pedestal sits at maximal values of D_e/χ_e , χ_i/χ_e .

Depending on how pressure builds up affects Q_e/Γ_e , Q_i/Q_e .

- We care about transport in vicinity of pedestal stability boundary.
- Linear gyrokinetic simulations give turbulent diffusive ratios.
- Expect KBM-constrained pedestal sits at maximal values of D_e/χ_e , χ_i/χ_e .

Depending on *how* pressure builds up affects Q_e/Γ_e , Q_i/Q_e .

 \rightarrow

 \rightarrow

Affects pedestal profile evolution.

• As pedestal pressure builds up, D_e/χ_e increases.

Fig 1: D_e/χ_e versus Δ_{ped} and $\beta_{\theta,\text{ped}}$ for NSTX 132543 with constant n. D_e/χ_e averaged over half-width and all $k_v \rho_i$.

• As pedestal pressure builds up, D_e/χ_e increases.

Fig 1: D_e/χ_e versus Δ_{ped} and $\beta_{\theta,\text{ped}}$ for NSTX 132543 with constant n. D_e/χ_e averaged over half-width and all $k_v \rho_i$.

- As pedestal pressure builds up, D_{ρ}/χ_{ρ} increases.
- Distinct D_e/χ_e increase at KBM stability boundary.

Fig 1: D_e/χ_e versus Δ_{ped} and $\beta_{\theta,\text{ped}}$ for NSTX 132543 with constant n. D_e/χ_e averaged over half-width and all $k_v \rho_i$.

Add information about most common mode type

Fig 1: D_e/χ_e versus Δ_{ped} and $\beta_{\theta,\text{ped}}$ for NSTX 132543 with constant n. D_e/χ_e averaged over half-width and all $k_v \rho_i$.

- As pedestal pressure builds up, D_{ρ}/χ_{ρ} increases.
- Distinct D_e/χ_e increase at KBM stability boundary.
- Corresponds with gyrokinetic mode type change across pedestal half-width:

constant n. D_e/χ_e averaged over half-width and all $k_v \rho_i$. Mode type is most common in half-width. 108
- As pedestal pressure builds up, D_{ρ}/χ_{ρ} increases.
- Distinct D_e/χ_e increase at KBM stability boundary.
- Distinct D_e/χ_e decrease at second stability.

constant n. D_e/χ_e averaged over half-width and all $k_v \rho_i$. Mode type is most common in half-width.

• α important parameter for D_{ρ}/χ_{ρ} .

- α important parameter for D_{ρ}/χ_{ρ} .
- Red regions GCP unstable to KBM.
- Black regions GCP stable to KBM.

- α important parameter for D_{ρ}/χ_{ρ} .
- First stability ITG/ETG-dominated.

- α important parameter for D_{ρ}/χ_{ρ} .
- First stability ITG/ETG-dominated.

• As pressure builds up, D_e/χ_e increases with α , as KBM more common in halfwidth.

- α important parameter for D_{ρ}/χ_{ρ} .
- First stability ITG/ETG-dominated.
- As pressure builds up, D_e/χ_e increases with α , as KBM more common in halfwidth.
- D_e/χ_e maximum in unstable pedestal region.

- α important parameter for D_{ρ}/χ_{ρ} .
- First stability ITG/ETG-dominated.
- As pressure builds up, D_e/χ_e increases with α , as KBM more common in halfwidth.
- D_{ρ}/χ_{ρ} maximum in unstable pedestal region.
- Second stability ETG-dominated.

- α important parameter for D_{ρ}/χ_{ρ} .
- First stability ITG/ETG-dominated.
- As pressure builds up, D_e/χ_e increases with α , as KBM more common in halfwidth.
- D_{ρ}/χ_{ρ} maximum in unstable pedestal region.
- Second stability ETG-dominated.
- In second stability, D_e/χ_e decreases with α as KBM stabilized in half-width.

- α important parameter for D_{ρ}/χ_{ρ} .
- First stability ITG/ETG-dominated.
- As pressure builds up, D_e/χ_e increases with α , as KBM more common in halfwidth.
- D_e/χ_e maximum in unstable pedestal region.
- Second stability ETG-dominated.
- In second stability, D_e/χ_e decreases with α as KBM stabilized in half-width.

• Plotting $\Gamma_e = D_e \nabla n_e$, $Q_e = \chi_e \nabla T_e + \frac{3}{2} \Gamma_e T_e$

Red: GCP unstable. Black: GCP stable

• Plotting
$$\Gamma_e = D_e \nabla n_e$$
,
 $Q_e = \chi_e \nabla T_e + \frac{3}{2} \Gamma_e T_e$

• Heat transport increases with α .

Red: GCP unstable. Black: GCP stable

Constant n Compare with co

Compare with constant T: Constant T

Constant n

Compare with constant T: Constant T

Constant n

Compare with constant T: Constant T

Unexpected $Q_e/\Gamma_e \sim \nabla n_e$

Constant n

Expected $Q_e/\Gamma_e \sim \nabla T_e$

Constant T

Unexpected $Q_e/\Gamma_e \sim \nabla n_e$

Constant T

Constant T

Constant T

 $D_e \chi_e$

Explains how Q_e/Γ_e increases with increasing ∇n_e .

Constant T

Transport Picture: Particle and Heat Combine Q_e/Γ_e and Q_e/Q_i

Transport Picture: Particle and Heat Combine Q_e/Γ_e and Q_e/Q_i

Constant n

ITG —> KBM —> ETG

Red: GCP unstable. Black: GCP stable

Transport Picture: Particle and Heat Combine Q_e/Γ_e and Q_e/Q_i

Constant n

|TG -> KBM -> ETG

Red: GCP unstable. Black: GCP stable

Constant T

• With self-consistently varied equilibria, both ideal and kinetic ballooning mode give $\Delta = \alpha(\beta_{\theta,\text{ped}})^{\beta} \text{ scaling close to NSTX}$ experiment.

- With self-consistently varied equilibria, both ideal and kinetic ballooning mode give $\Delta = \alpha(\beta_{\theta, \text{ped}})^{\beta}$ scaling close to NSTX experiment.
- GCP given by KBM more accurate, due to lower KBM stability threshold.

- With self-consistently varied equilibria, both ideal and kinetic ballooning mode give $\Delta = \alpha(\beta_{\theta, \text{ped}})^{\beta}$ scaling close to NSTX experiment.
- GCP given by KBM more accurate, due to lower KBM stability threshold.
- Transport in first stability, instability, and second stability varies whether n or T kept constant during pressure buildup.

- With self-consistently varied equilibria, both ideal and kinetic ballooning mode give $\Delta = \alpha(\beta_{\theta, \text{ped}})^{\beta}$ scaling close to NSTX experiment.
- GCP given by KBM more accurate, due to lower KBM stability threshold.
- Transport in first stability, instability, and second stability varies whether n or T kept constant during pressure buildup.

Acknowledgements

discussions.

• Thanks to P. Snyder, A. Diallo, J. Candy, E. Belli, and M. Lampert for helpful

Back Up Slides

Transport Picture: Ions Vs. Electrons

Transport Picture: Ions Vs. Electrons

• Consider χ_i/χ_e , relative heat diffusivity of ions and electrons.

• Consider χ_i/χ_e , relative heat diffusivity of ions and electrons.

Fig 1: χ_i/χ_e versus Δ_{ped} and $\beta_{\theta,\text{ped}}$ for NSTX 132543 with constant T. χ_i/χ_e averaged over half-width and all $k_v \rho_i$. Mode type is most common in half-width. 138

- Consider χ_i/χ_e , relative heat diffusivity of ions and electrons.
- Increase in χ_i/χ_e near first stability boundary.

Fig 1: χ_i/χ_e versus Δ_{ped} and $\beta_{\theta,\text{ped}}$ for NSTX 132543 with constant T. χ_i/χ_e averaged over half-width and all $k_v \rho_i$. Mode type is most common in half-width. 139

- Consider χ_i/χ_e , relative heat diffusivity of ions and electrons.
- Relative ion diffusivity maximum in GCP unstable region.

 Q_e/Q_i

χ_i/χ_e profile explains Q_e/Q_i profile at constant T.

 χ_i/χ_e profile explains Q_e/Q_i profile at constant T. Consider constant n

 Q_e/Q_i

Transport Picture: Ions Vs. Electrons

Constant n

Red: GCP unstable. Black: GCP stable KBM FT M. IFG BETG KBM decreases ETG Delxe easing 8.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 $\langle Q_e/Q_i \rangle_{r/a,\,k_y}$

Q_e/Q_i

Transport Picture: Ions Vs. Electrons

Constant n

Red: GCP unstable. Black: GCP stable MTM KBM ETG ITG r/aincreasing 8.0 2.5 12.5 15.0 20.0 5.0 7.5 10.0 17.5 $\langle Q_e/Q_i
angle_{r/a,\,k_y}$

Q_e/Q_i

Transport Picture: Ions Vs. Electrons

Constant n

Red: GCP unstable. Black: GCP stable KBM ET M. ITG ESETG KBIN decreases ETG Delxe easing 8.0 2.5 12.5 20.0 5.0 7.5 10.0 15.0 17.5 $\langle Q_e/Q_i
angle_{r/a,\,k_y}$

Q_e/Q_i

Transport Picture: Summary

Constant n

• ITG —> KBM —> ETG increases Q_e/Q_i

Red: GCP unstable. Black: GCP stable

Constant T

• MTM —> KBM —> MTM/ETG decreases Q_e/Q_i

Red: GCP unstable. Black: GCP stable

Transport Picture: Summary

Constant n

• ITG —> KBM —> ETG increases Q_e/Γ_e

Constant T

• MTM —> KBM —> MTM/ETG complicated Q_e/Γ_e

Transport Picture: Summary • MTM —> KBM —> MTM/ETG • ITG —> KBM —> ETG • MTG (Q_e/Γ_e)

Constant n

Backup SlidesUnstable pedestals sit at maximum electron diffusivity points.Constant nConstant T

Red: GCP unstable. Black: GCP stable

Backup Slides

Constant T pedestal sits at a minimum Q_e state. Presence of ITG in constant n gives very low Q_e for constant n.

Constant n

Constant n

Red: GCP unstable. Black: GCP stable

Red: GCP unstable. Black: GCP stable

Constant T

Red: GCP unstable. Black: GCP stable

T, n trajectory plots...

Red: GCP unstable. Black: GCP stable

Red: GCP unstable. Black: GCP stable

Constant T

Red: GCP unstable. Black: GCP stable

Difference b/w low-A BCP and our results.

- BCP assumes that both density and temperature profiles can be fit with tanh.
- In 132543 case, there is no parameterized temperature pedestal if the fit is bad. Density pedestal usually fits extremely well. We take $\Delta_{p,\text{ped}} = \Delta_{n,\text{ped}}$.

Backup Slides NSTX 132543 Profiles, Constant T

Kinetic, Ideal Comparison $\hat{s} - \alpha$

 Difference in kinetic and ideal boundaries apparent from s-alpha diagram.

Kinetic, Ideal Comparison $\hat{s} - \alpha$

• KBM and ideal $\hat{s} - \alpha$ diagram.

Kinetic, Ideal Comparison $\hat{s} - \alpha$

- KBM and ideal $\hat{s} \alpha$ diagram.
- KBM critical α much lower than ideal.

Kinetic, Ideal Comparison $\hat{s} - \alpha$

- KBM and ideal $\hat{s} \alpha$ diagram. • KBM critical α much lower than ideal.
- Lower KBM threshold crucial for accurate Δ scaling.

