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Hypothesis: Kinetic Ballooning Mode (KBM) thresholds 
predict pedestal height and width  constraint for NSTX∇p
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• KBM = ideal -driven ballooning + kinetic 
physics.

∇p

Hypothesis: KBM thresholds predict pedestal height 
and width  constraint for NSTX∇p
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• KBM = ideal -driven ballooning + kinetic 
physics. 

• KBM stability threshold lower than ideal MHD 
mode.

∇p

Fig 1: Schematic instability growth rate versus . 
Adapted from Fig 1.2 [Snyder Thesis, 1999]
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• KBM = ideal -driven ballooning + kinetic 
physics. 

• KBM stability threshold lower than ideal MHD 
mode. 

• KBM signatures: 
 

 (ion/electron heat diffusivity ratio) 
 

 (particle, heat diffusivity ratio) 
 
Growth rate  sensitive to  and 

∇p

χi/χe ∼ 1

De/χe ∼ 1

γ ∇Ti ∇Te 7

Hypothesis: KBM thresholds predict pedestal height 
and width  constraint for NSTX∇p
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• KBM = ideal -driven ballooning + kinetic 
physics. 

• KBM stability threshold lower than ideal MHD 
mode. 

• Basis for EPED model:  
 builds up in ELM cycle, KBM transport 

stiff —> KBM sets maximum .

∇p

βpedestal

∇p

Fig 1: Schematic instability growth rate versus . 
Adapted from Fig 1.2 [Snyder Thesis, 1999]
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• KBM = ideal -driven ballooning + kinetic 
physics. 

• KBM stability threshold lower than ideal MHD 
mode. 

• Basis for EPED model:  
 builds up in ELM cycle, KBM transport 

stiff —> KBM sets maximum . 

• We find important differences b/w KBM and 
ideal stability in NSTX.

∇p

βpedestal

∇p

Fig 1: Schematic instability growth rate versus . 
Adapted from Fig 1.2 [Snyder Thesis, 1999]
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• Recent work [Guttenfelder, 2022] shows NSTX experimental profiles within 
10% of KBM critical gradient .αKBM,crit

Fig 1: NSTX  profiles and critical 
KBM  values. Adapted from 
W. Guttenfelder APS 2022.

α
α

Hypothesis: KBM thresholds predict pedestal height 
and width  constraint for NSTX∇p
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• Recent work [Guttenfelder, 2022] shows NSTX experimental profiles within 
10% of KBM critical gradient . 

• Related important topic: non-ideal peeling ballooning modes. See A. Kleiner 
[NF 2021, 2022] (resistive effects important).

αKBM,crit

Hypothesis: KBM thresholds predict pedestal height 
and width  constraint for NSTX∇p

Fig 1: NSTX  profiles and critical 
KBM  values. Adapted from 
W. Guttenfelder APS 2022.
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Why:  
EPED  prediction successful in many devices, not sufficient for all NSTX discharges.* ∇p
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Hypothesis: KBM thresholds predict pedestal height 
and width  constraint for NSTX∇p



Why:  
EPED  prediction successful in many devices, not sufficient for all NSTX discharges.* ∇p

Fig 1: Pedestal width versus  for DIIID 

discharges. Adapted from Fig 2 [Snyder, NF, 2009]

βθ,ped
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βθ,ped = 2μ0pped/B2
θ

Hypothesis: KBM thresholds predict pedestal height 
and width  constraint for NSTX∇p



Why:  
EPED  prediction successful in many devices, not sufficient for all NSTX discharges.* ∇p

Fig 1: Pedestal width versus  for DIIID 

discharges. Adapted from Fig 2 [Snyder, NF, 2009]

βθ,ped
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βθ,ped = 2μ0pped/B2
θ

Hypothesis: KBM thresholds predict pedestal height 
and width  constraint for NSTX∇p
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EPED Ballooning Critical Pedestal (BCP) 
constraint different for low-A=R/a.

βθ,ped = 2μ0pped/B2
θ
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βθ,ped = 2μ0pped/B2

θ

EPED Ballooning Critical Pedestal (BCP) 
constraint different for low-A=R/a.

BCP (Conventional-A):  

ELMy NSTX: 

Δ ∼ β1/2
θ,ped

Δ ∼ β1.05
θ,ped
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βθ,ped = 2μ0pped/B2

θ

EPED Ballooning Critical Pedestal (BCP) 
constraint different for low-A=R/a.

BCP (Conventional-A):  

BCP (Low-A):  

ELMy NSTX: 

Δ ∼ β1/2
θ,ped

Δ ∼ β0.74
θ,ped

Δ ∼ β1.05
θ,ped
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βθ,ped = 2μ0pped/B2

θ

EPED Ballooning Critical Pedestal (BCP) 
constraint different for low-A=R/a.

BCP (Conventional-A):  

BCP (Low-A):  

ELMy NSTX: 

Δ ∼ β1/2
θ,ped

Δ ∼ β0.74
θ,ped

Δ ∼ β1.05
θ,ped
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βθ,ped = 2μ0pped/B2

θ

EPED Ballooning Critical Pedestal (BCP) 
constraint different for low-A=R/a.

BCP (Conventional-A):  

BCP (Low-A):  

ELMy NSTX: 

Δ ∼ β1/2
θ,ped

Δ ∼ β0.74
θ,ped

Δ ∼ β1.05
θ,ped
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βθ,ped = 2μ0pped/B2

θ

EPED Ballooning Critical Pedestal (BCP) 
constraint different for low A=R/a.

BCP for low-A partially 
recovers ELMy NSTX scaling.
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βθ,ped = 2μ0pped/B2

θ

EPED Ballooning Critical Pedestal (BCP) 
constraint different for low-A=R/a.

BCP for low-A partially 
recovers ELMy NSTX scaling. 
ELM-free NSTX discharges 
deviate from scalings [Maingi 
2015, JNM].
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βθ,ped = 2μ0pped/B2

θ

EPED Ballooning Critical Pedestal (BCP) 
constraint different for low-A=R/a.

BCP for low-A partially 
recovers ELMy NSTX scaling. 
ELM-free NSTX discharges 
deviate from scalings [Maingi 
2015, JNM]. 
Important for NSTX-U and 
future ST reactors. 
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βθ,ped = 2μ0pped/B2

θ

EPED Ballooning Critical Pedestal (BCP) 
constraint different for low-A=R/a.

BCP for low-A partially 
recovers ELMy NSTX scaling. 
ELM-free NSTX discharges 
deviate from scalings [Maingi 
2015, JNM]. 
Future NSTX-U pedestals at 
higher pressure, current. 

N
ST

X
-U

Going back to original hypothesis…



Measure of success: 

 KBM reproduces height width 
scaling found for NSTX 

experiments: 
 

       

     

Δped = (0.4 ± 0.1)(βθ,ped)1.05±0.2
Δ

pe
d
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βθ,ped = 2μ0pped/B2

θ

Hypothesis: KBM thresholds predict pedestal 
height and width  constraint for NSTX∇p



Why:  
EPED  prediction successful in many devices, not sufficient for all NSTX discharges.* 
Important because pedestal height  and width  useful for , fusion gain Q. 

∇p
pped Δped nTτE
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Hypothesis: KBM thresholds predict pedestal 
height and width  constraint for NSTX∇p



Why:  
EPED  prediction successful in many devices, not sufficient for all NSTX discharges.* 
Important because pedestal height  and width  useful for , fusion gain Q. 

∇p
pped Δped nTτE

Table 1: Adapted from [Hughes 2020, 
JPP], Energy gain Q for three different 

 values for SPARC.Te,ped/TEPED
e,ped
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Hypothesis: KBM thresholds predict pedestal 
height and width  constraint for NSTX∇p



Why:  
EPED  prediction successful in many devices, not sufficient for all NSTX discharges.* 
Important because pedestal height  and width  useful for , fusion gain Q. 

∇p
pped Δped nTτE
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SPARC Q predicted to 
decrease 3x with 50% 
pedestal degradation 

—>  
 large reactor design 

uncertainty

Table 1: Adapted from [Hughes 2020, 
JPP], Energy gain Q for three different 

 values for SPARC.Te,ped/TEPED
e,ped

Hypothesis: KBM thresholds predict pedestal 
height and width  constraint for NSTX∇p



Why:  
EPED  prediction successful in many devices, not sufficient for all NSTX discharges.* 
Important because pedestal height  and width  useful for , fusion gain Q. 
 
What: 
Use linear gyrokinetics to scan in self-consistent equilibria with varying ,  to 
determine stability boundaries. EPED-inspired, adding non-ideal physics.

∇p
pped Δped nTτE

pped Δped
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Hypothesis: KBM thresholds predict pedestal 
height and width  constraint for NSTX∇p



What: 
Use linear gyrokinetics to scan in self-consistent equilibria with varying ,  to 
determine stability boundaries. EPED-inspired, adding non-ideal physics.

pped Δped

Fig 1: Pedestal 
height versus 

width for a DIIID 
discharge. 

Adapted from 
Fig 5 [Snyder, 

NF, 2009]

EPED evaluates ideal 
ballooning critical 
pedestal (BCP) 

constraint for model 
equilibria on a height, 

width grid.
29

Hypothesis: KBM thresholds predict pedestal 
height and width  constraint for NSTX∇p



What: 
Use linear gyrokinetics to scan in self-consistent equilibria with varying ,  to 
determine stability boundaries. EPED-inspired, adding non-ideal physics.

pped Δped

Fig 1: Pedestal height versus 
width for a DIIID discharge. 

Adapted from Fig 5 
[Snyder, NF, 2009]

Take EPED-like height-width 
grid, run gyrokinetics.

Our goal:

30

Hypothesis: KBM thresholds predict pedestal 
height and width  constraint for NSTX∇p



What: 
Use linear gyrokinetics to scan in self-consistent equilibria with varying ,  to 
determine stability boundaries. EPED-inspired, adding non-ideal physics.

pped Δped

Starting from experiment, we 
vary equilibria self-consistently 

in height, width space.
Fig 1: Pedestal height versus 
width for a DIIID discharge. 

Adapted from Fig 5 
[Snyder, NF, 2009]

x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x
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Hypothesis: KBM thresholds predict pedestal 
height and width  constraint for NSTX∇p



What: 
Use linear gyrokinetics to scan in self-consistent equilibria with varying ,  to 
determine stability boundaries. EPED-inspired, adding non-ideal physics.

pped Δped

Starting from experiment, we 
vary equilibria self-consistently 

in height, width space.
Fig 1: Pedestal height versus 
width for a DIIID discharge. 

Adapted from Fig 5 
[Snyder, NF, 2009]

x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x

Run linear gyrokinetic simulations 
for each equilibrium, determine 

gyrokinetic critical pedestal (GCP) 
stability constraint.
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Hypothesis: KBM thresholds predict pedestal 
height and width  constraint for NSTX∇p



What: 
Use linear gyrokinetics to scan in self-consistent equilibria with varying ,  to 
determine stability boundaries. EPED-inspired, adding non-ideal physics.

pped Δped

Fig 1: Pedestal height versus 
width for a DIIID discharge. 

Adapted from Fig 5 
[Snyder, NF, 2009]

x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x

Run linear gyrokinetic simulations 
for each equilibrium, determine 

gyrokinetic critical pedestal (GCP) 
stability constraint.

Starting from experiment, we 
vary equilibria self-consistently 

in height, width space.
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unstable stable

Hypothesis: KBM thresholds predict pedestal 
height and width  constraint for NSTX∇p



What: 
Use linear gyrokinetics to scan in self-consistent equilibria with varying ,  to 
determine stability boundaries. EPED-inspired, adding non-ideal physics.

pped Δped

Fig 1: Pedestal height versus 
width for a DIIID discharge. 

Adapted from Fig 5 
[Snyder, NF, 2009]

x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x 
x x x x x x x x x x x x

Run linear gyrokinetic simulations 
for each equilibrium, determine 

gyrokinetic critical pedestal (GCP) 
stability constraint.

Starting from experiment, we 
vary equilibria self-consistently 

in height, width space.

unstable stable

GCP
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Hypothesis: KBM thresholds predict pedestal 
height and width  constraint for NSTX∇p



Finding the Gyrokinetic Critical Pedestal (GCP)
Construct  gridpped, Δped
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Finding the Gyrokinetic Critical Pedestal (GCP)
Construct  gridpped, Δped
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Self-consistent 
NSTX equilibria across a range 
of pedestal widths and heights.



Set up radial grid across full pedestal
Finding the Gyrokinetic Critical Pedestal (GCP)

  = location of CGRO simulation Ψn

p
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Finding the Gyrokinetic Critical Pedestal (GCP)
Set up radial grid across full pedestal, binormal wavenumbers , radial 
wavenumber .

kyρi

θ0 = kx /ky ̂s

  = location of CGRO simulation

θ0

kyρi

0.0

0.12 0.18 0.240.06

Ψn

p
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Finding the Gyrokinetic Critical Pedestal (GCP)

If all modes across half-width are unstable to same 
instability —> pedestal GCP unstable

  = location of CGRO simulation Ψn

p
pedestal half-width
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Finding the Gyrokinetic Critical Pedestal (GCP)
Pedestal Height Scan

Ψn

p
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Higher Pressure



Finding the Gyrokinetic Critical Pedestal (GCP)
Pedestal Height Scan

Ψn

p
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Higher Pressure

Lower Pressure



Finding the Gyrokinetic Critical Pedestal (GCP)
Pedestal Width Scan

Ψn

p
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Narrower



Finding the Gyrokinetic Critical Pedestal (GCP)
Pedestal Height Scan

Ψn

p
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Higher Pressure

Lower Pressure

Looking at actual NSTX pressure profiles…



Finding the Gyrokinetic Critical Pedestal (GCP)
Pedestal Height Scan
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Base case NSTX 132543 pressure profile



Finding the Gyrokinetic Critical Pedestal (GCP)
Pedestal Height Scan
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1.6   rescaling× pped



Finding the Gyrokinetic Critical Pedestal (GCP)
Pedestal Height Scan
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0.4   rescaling× pped



Finding the Gyrokinetic Critical Pedestal (GCP)
Pedestal Height Scan
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rescale  —>  
KBM stability changes

α



•  versus  for NSTX 132543 
equilibrium.
α r/a

Finding the Gyrokinetic Critical Pedestal (GCP)

α = − q2μ0R∇P/B2
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•  versus  for NSTX 132543 
equilibrium.
α r/a

Finding the Gyrokinetic Critical Pedestal (GCP)

α = − q2μ0R∇P/B2
49

Gyrokinetic simulations at  
each radial location



•  versus  for NSTX 132543 
equilibrium. 

• KBM unstable?

α r/a

Finding the Gyrokinetic Critical Pedestal (GCP)

50 α = − q2μ0R∇P/B2



•  versus  for NSTX 132543 
equilibrium. 

• Pedestal GCP unstable to 
KBM!

α r/a

Finding the Gyrokinetic Critical Pedestal (GCP)

Pedestal Half-width

51 α = − q2μ0R∇P/B2



•  versus  for NSTX 132543 
equilibrium. 

• Add larger  profile.

α r/a

pped

Finding the Gyrokinetic Critical Pedestal (GCP)
Pedestal Pressure Buildup

Pedestal Half-width

52 α = − q2μ0R∇P/B2



•  versus  for NSTX 132543 
equilibrium. 

• Add larger  profile. 

• Both profiles GCP unstable to 
KBM.

α r/a

pped

Finding the Gyrokinetic Critical Pedestal (GCP)
Pedestal Pressure Buildup

53 α = − q2μ0R∇P/B2



•  versus  for NSTX 132543 
equilibrium. 

• Add larger  profile. 

• Both profiles GCP unstable to 
KBM. 

• Add smaller  profile. 

• Smaller  GCP stable.

α r/a

pped

pped

pped

Finding the Gyrokinetic Critical Pedestal (GCP)
Pedestal Pressure Buildup

54 α = − q2μ0R∇P/B2



Gyrokinetics

• KBM stability from CGYRO 
gyrokinetic calculation for 
NSTX discharge 132543.

55

Kinetic, Ideal Comparison



Gyrokinetics

• KBM stability from CGYRO 
gyrokinetic calculation for 
NSTX discharge 132543. 

• Experimental point
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Kinetic, Ideal Comparison



• KBM stability from CGYRO 
gyrokinetic calculation for 
NSTX discharge 132543.
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STABLE

STABLE

UNSTABLE

Kinetic, Ideal Comparison
Gyrokinetics



• Clear KBM stability boundary.
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Kinetic, Ideal Comparison
Gyrokinetics



• Clear KBM stability boundary.
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Kinetic, Ideal Comparison
Gyrokinetics

Let’s perform the same analysis, but with ideal ballooning modes.



Ideal MHD

• Ideal ballooning stability from 
BALOO calculation.
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Kinetic, Ideal Comparison



• Ideal ballooning stability from 
BALOO calculation.
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Kinetic, Ideal Comparison

STABLE

UNSTABLE

Ideal MHD

STABLE



• Ideal ballooning stability from 
BALOO calculation. 

• Second stable region: we count 
as stable.

62

Kinetic, Ideal Comparison

STABLE

UNSTABLE

SECOND STABLE

Ideal MHD



Kinetic, Ideal Comparison

• Ideal ballooning stability from 
BALOO calculation. 

• Ideal stability criteria identical 
to GCP: all half-width points 
ideal unstable.
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Ideal MHD

STABLE

UNSTABLE

STABLE



Kinetic, Ideal Comparison

• Ideal ballooning stability from 
BALOO calculation. 

• Clear ideal stability boundary.
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Ideal MHD



Kinetic, Ideal Comparison

• KBM has lower pressure 
gradient stability boundary.
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Kinetic, Ideal Comparison

• KBM has lower pressure 
gradient stability boundary. 

• Region where ideal stable, 
but kinetic unstable.

increasing ∇p
ide

al s
tab

le b
ut 

kin
etic

 un
stab

le r
egio

n
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Kinetic, Ideal Comparison
 Scaling LawΔ = α(βθ,ped)β

• Both kinetic and ideal boundaries 
far from conventional-A BCP: 

.Δ ∼ βθ,ped
1/2

Δ ∼ βθ,ped
1/2

Δ ∼ βθ,ped
1/2
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Kinetic, Ideal Comparison
 Scaling LawΔ = α(βθ,ped)β

• Both kinetic and ideal boundaries 
far from standard aspect ratio 
EPED: . 

• Ideal boundary fit: 
.

Δ ∼ βθ,ped
1/2

Δ = 0.24βθ,ped
0.97

ideal:
 Δ = 0.24βθ,ped

0.97
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Kinetic, Ideal Comparison
 Scaling LawΔ = α(βθ,ped)β

• Both kinetic and ideal boundaries 
far from standard aspect ratio 
EPED: . 

• Ideal boundary fit: 
. 

• Kinetic boundary fit: 
.

Δ ∼ βθ,ped
1/2

Δ = 0.24βθ,ped
0.97

Δ = 0.28βθ,ped
0.82

ideal:
 Δ = 0.24βθ,ped

0.97

kin
etic

: Δ
= 0.28βθ,ped

0.82
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Kinetic, Ideal Comparison
 Scaling LawΔ = α(βθ,ped)β

• Perform same exercise with 
pressure varied with constant n.

70



Kinetic, Ideal Comparison
 Scaling LawΔ = α(βθ,ped)β

• Perform same exercise with 
pressure varied with constant n. 

• Ideal boundary fit: 
. 

• Kinetic boundary fit: 
.

Δ = 0.27βθ,ped
1.10

Δ = 0.33βθ,ped
0.99 ideal:

 Δ = 0.27βθ,ped
1.10

kin
etic

: Δ
= 0.33βθ,ped

0.99
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Kinetic, Ideal Comparison
 Scaling LawΔ = α(βθ,ped)β

• Significant difference between 
ideal and kinetic scaling.

kin
etic

ideal
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Kinetic, Ideal Comparison
 Scaling LawΔ = α(βθ,ped)β

• Significant difference between 
ideal and kinetic scaling.

kin
etic

ideal

73

Comparing with experimental data.



Kinetic, Ideal Comparison
 Scaling LawΔ = α(βθ,ped)β

• Ideal scalings tend to 
over-predict pedestal 
height.

ide
al
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Kinetic, Ideal Comparison
 Scaling LawΔ = α(βθ,ped)β

• Ideal scalings tend to 
over-predict pedestal 
height. 

• Kinetic boundary closer 
to NSTX experiment.

ki
ne

tic

ide
al
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Test original hypothesis: KBM reproduces NSTX 
scaling
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Test original hypothesis: KBM reproduces NSTX 
scaling
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KBM scaling at constant 
n, consistent with NSTX 

experiment. 
        
Ideal scaling inconsistent.

Test original hypothesis: KBM reproduces NSTX 
scaling
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KBM scaling at constant 
n, consistent with NSTX 

experiment. 
        
Ideal scaling inconsistent.∼

Test original hypothesis: KBM reproduces NSTX 
scaling
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KBM scaling at constant 
n, consistent with NSTX 

experiment. 
        
Ideal scaling inconsistent.∼

—> kinetic physics 
important for NSTX 
pedestal prediction.

Test original hypothesis: KBM reproduces NSTX 
scaling
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KBM constant n 
consistent. 

KBM constant T  
inconsistent.∼

co
ns

ta
nt

 n
co

ns
ta
nt

 T

Test original hypothesis: KBM reproduces NSTX 
scaling
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Important caveat: 
No errorbars for our 

KBM/ideal scalings, so 
possible ideal scaling also 

consistent.

Test original hypothesis: KBM reproduces NSTX 
scaling



Testing the critical pedestal criteria
How many radial points for a ‘critical’ pedestal?

8383



• Recall: for a pedestal to be ‘unstable’, 
100% of radial locations in pedestal half-
width to be KBM/ideal unstable.

Testing the critical pedestal criteria
How many radial points for a ‘critical’ pedestal?

84
  = location of CGRO simulation Ψn

p

pedestal half-width

84



• Recall: for a pedestal to be ‘unstable’, 
100% of radial locations in pedestal half-
width to be KBM/ideal unstable. 

• What if we relaxed this criterion?

Testing the critical pedestal criteria
How many radial points for a ‘critical’ pedestal?

85
  = location of CGRO simulation Ψn

p

pedestal half-width

85



• Recall: for a pedestal to be ‘unstable’, 
100% of radial locations in pedestal half-
width to be KBM/ideal unstable. 

• Generalizing criterion to xx% of radial 
locations unstable, we measure error 
between GCP/BCP scaling and experiment.

Testing the critical pedestal criteria
How many radial points for a ‘critical’ pedestal?

8686
  = location of CGRO simulation Ψn

p

pedestal half-width



• Recall: for a pedestal to be ‘unstable’, 
100% of radial locations in pedestal half-
width to be KBM/ideal unstable. 

• Generalizing criterion to xx% of radial 
locations unstable, we measure error 
between GCP/BCP scaling and experiment. 

• Find: 
  1) KBM  scaling improves as xx 100%Δ →

Testing the critical pedestal criteria
How many radial points for a ‘critical’ pedestal?

87

Fig: Mean squared error versus % of modes  
needed to trigger BCP/GCP. Error calculated 
from theory and ELMy NSTX experiments.

87



• Recall: for a pedestal to be ‘unstable’, 
100% of radial locations in pedestal half-
width to be KBM/ideal unstable. 

• Generalizing criterion to xx% of radial 
locations unstable, we measure error 
between GCP/BCP scaling and experiment. 

• Find: 
  1) KBM  scaling improves as xx 100% 
  2) ideal  scaling degrades as xx 100%

Δ →
Δ →

Testing the critical pedestal criteria
How many radial points for a ‘critical’ pedestal?

88

Fig: Mean squared error versus % of modes  
needed to trigger BCP/GCP. Error calculated 
from theory and ELMy NSTX experiments.
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Testing the critical pedestal criteria
How many radial points for a ‘critical’ pedestal?

89

Fig: Mean squared error versus % of modes  
needed to trigger BCP/GCP. Error calculated 
from theory and ELMy NSTX experiments.

occurs because ideal overpredicts NSTX   pped

89



• ELM-free lithiated NSTX 
discharges can have wider, higher 
pedestals [Maingi, 2015, 2017].

90

Wide Pedestal KBM Scaling



Wide Pedestal KBM Scaling

• ELM-free lithiated NSTX 
discharges can have wider, higher 
pedestals [Maingi, 2015, 2017]. 

• KBM GCP for NSTX 132588 
gives weaker  scaling, likely 
within experimental uncertainty.

Δ
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Part I Summary

92

• Original hypothesis: KBM can predict 
pedestal height and width  constraint for 
NSTX.

∇p



• Original hypothesis: KBM can predict 
pedestal height and width  constraint for 
NSTX. 

• Conclusion: KBM with self-consistently 
varied equilibria starting from experiment 
gives , agreement!

∇p

Δ ∼ βθ,ped
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Part I Summary
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• Original hypothesis: KBM can predict 
pedestal height and width  constraint for 
NSTX. 

• Conclusion: KBM with self-consistently 
varied equilibria starting from experiment 
gives , agreement! 

• Good news: ideal ballooning stability with 
sufficient equilibrium information might be 
good enough for future ST devices.

∇p

Δ ∼ βθ,ped

Part I Summary



Part II: Transport
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• We care about transport in vicinity of 
pedestal stability boundary. 

Transport
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• We care about transport in vicinity of 
pedestal stability boundary. 

Transport
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• We care about transport in vicinity of 
pedestal stability boundary.  

• Linear gyrokinetic simulations give  
turbulent diffusive ratios. 

• Expect KBM-constrained pedestal sits at 
maximal values of , . 

 
Depending on how pressure builds up 
affects , . 

 
Affects pedestal profile evolution.

De/χe χi/χe
→

Qe/Γe Qi/Qe
→

Transport
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• As pedestal pressure builds up,  
increases.

De/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all .

De/χe Δped βθ,ped

De/χe kyρi

Transport Picture: Particle Vs. Heat
Constant n
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• As pedestal pressure builds up,  
increases.

De/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all .

De/χe Δped βθ,ped

De/χe kyρi

Pedestal pressure build up:

Transport Picture: Particle Vs. Heat
Constant n
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• As pedestal pressure builds up,  
increases. 

• Distinct  increase at KBM stability 
boundary.

De/χe

De/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all .

De/χe Δped βθ,ped

De/χe kyρi

Transport Picture: Particle Vs. Heat
Constant n
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Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all .

De/χe Δped βθ,ped

De/χe kyρi

Transport Picture: Particle Vs. Heat
Constant n

Add information about most 
common mode type
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• As pedestal pressure builds up,  
increases. 

• Distinct  increase at KBM stability 
boundary. 

• Corresponds with gyrokinetic mode type 
change across pedestal half-width:  

 
ITG/ETG —> KBM. 

De/χe

De/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all . 

Mode type is most common in half-width.

De/χe Δped βθ,ped

De/χe kyρi

Transport Picture: Particle Vs. Heat
Constant n
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• As pedestal pressure builds up,  
increases. 

• Distinct  increase at KBM stability 
boundary. 

• Distinct  decrease at second 
stability.

De/χe

De/χe

De/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all . 

Mode type is most common in half-width.

De/χe Δped βθ,ped

De/χe kyρi

Transport Picture: Particle Vs. Heat
Constant n
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• As pedestal pressure builds up,  
increases. 

• Distinct  increase at KBM stability 
boundary. 

• Distinct  decrease at second 
stability.

De/χe

De/χe

De/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all . 

Mode type is most common in half-width.

De/χe Δped βθ,ped

De/χe kyρi

Transport Picture: Particle Vs. Heat
Constant n

Making 1-dimensional plots…
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•  important parameter for .α De/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all . 

Mode type is most common in half-width.

De/χe α De/χe

De/χe kyρi

Constant n

Transport Picture: Particle Vs. Heat
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•  important parameter for . 

• Red regions GCP unstable to KBM. 

• Black regions GCP stable to KBM.

α De/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all . 

Mode type is most common in half-width.

De/χe α De/χe

De/χe kyρi

GCP stable

GCP stable

KBM GCP 
unstable

Transport Picture: Particle Vs. Heat
Constant n
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•  important parameter for . 

• First stability ITG/ETG-dominated.

α De/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all . 

Mode type is most common in half-width.

De/χe α De/χe

De/χe kyρi

First 
stability

Transport Picture: Particle Vs. Heat
Constant n
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•  important parameter for . 

• First stability ITG/ETG-dominated. 
 

• As pressure builds up,  increases 
with , as KBM more common in half-
width.

α De/χe

De/χe
α

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all . 

Mode type is most common in half-width.

De/χe α De/χe

De/χe kyρi

First 
stability

pressure  
build-up

Transport Picture: Particle Vs. Heat
Constant n

in
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ea
sin
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T
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•  important parameter for . 

• First stability ITG/ETG-dominated. 

• As pressure builds up,  increases 
with , as KBM more common in half-
width. 

•  maximum in unstable pedestal 
region.

α De/χe

De/χe
α

De/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all . 

Mode type is most common in half-width.

De/χe α De/χe

De/χe kyρi

First 
stability

pressure  
build-up

KBM GCP 
unstable

Transport Picture: Particle Vs. Heat
Constant n
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•  important parameter for . 

• First stability ITG/ETG-dominated. 

• As pressure builds up,  increases 
with , as KBM more common in half-
width. 

•  maximum in unstable pedestal 
region. 

• Second stability ETG-dominated.

α De/χe

De/χe
α

De/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all . 

Mode type is most common in half-width.

De/χe α De/χe

De/χe kyρi

First 
stability

pressure  
build-up

Second 
stability

Transport Picture: Particle Vs. Heat
Constant n
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•  important parameter for . 

• First stability ITG/ETG-dominated. 

• As pressure builds up,  increases 
with , as KBM more common in half-
width. 

•  maximum in unstable pedestal 
region. 

• Second stability ETG-dominated. 

• In second stability,  decreases with 
 as KBM stabilized in half-width.

α De/χe

De/χe
α

De/χe

De/χe
α

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all . 

Mode type is most common in half-width.

De/χe α De/χe

De/χe kyρi

First 
stability

pressure  
build-up

Second 
stability KBM 

stabilization

Transport Picture: Particle Vs. Heat
Constant n
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unstable
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•  important parameter for . 

• First stability ITG/ETG-dominated. 

• As pressure builds up,  increases 
with , as KBM more common in half-
width. 

•  maximum in unstable pedestal 
region. 

• Second stability ETG-dominated. 

• In second stability,  decreases with 
 as KBM stabilized in half-width.

α De/χe

De/χe
α

De/χe

De/χe
α

Fig 1:  versus  and  for NSTX 132543 with 
constant n.  averaged over half-width and all . 

Mode type is most common in half-width.

De/χe α De/χe

De/χe kyρi

First 
stability

pressure  
build-up
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stability KBM 
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Transport Picture: Particle Vs. Heat
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• Plotting , Γe = De ∇ne

Qe = χe ∇Te +
3
2

ΓeTe

Transport Picture: Particle Vs. Heat
Constant n
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• Plotting , 

 

• Heat transport increases with .

Γe = De ∇ne

Qe = χe ∇Te +
3
2

ΓeTe

α

First 
stability

KBM 
unstable

Second 
stability

Transport Picture: Particle Vs. Heat
Constant n
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Transport Picture: Particle Vs. Heat

124124

in
cr

ea
sin

g 
∇

n

in
cr

ea
sin

g 
∇

T



Constant T

 in
cre

ase
s w

ith
 

inc
rea

sin
g 

! 

Q e/Γ
e

∇n

Constant T Qe/ΓeDe/χe

 decreases with 

increasing 

D
e /χ

e

∇n
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Transport Picture: Particle Vs. Heat
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Transport Picture: Particle and Heat
Combine  and Qe/Γe Qe/Qi



Combine  and Qe/Γe Qe/Qi

Constant n
ITG —> KBM —> ETG

KBM

First  
stability

Second  
stability

Transport Picture: Particle and Heat
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Constant n Constant T
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ITG —> KBM —> ETG

MTM

KBM

MTM —> KBM —> MTM/ETG

First  
stability

First  
stabilitySecond  

stability
Second  
stability

Transport Picture: Particle and Heat
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Transport Picture: Ions Vs. Electrons
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Transport Picture: Ions Vs. Electrons

• Consider , relative heat diffusivity of 
ions and electrons.

χi/χe

137137



Transport Picture: Ions Vs. Electrons

• Consider , relative heat diffusivity of 
ions and electrons.

χi/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant T.  averaged over half-width and all . 

Mode type is most common in half-width.

χi/χe Δped βθ,ped

χi/χe kyρi

Constant T
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Transport Picture: Ions Vs. Electrons

• Consider , relative heat diffusivity of 
ions and electrons. 

• Increase in  near first stability 
boundary.

χi/χe

χi/χe

Fig 1:  versus  and  for NSTX 132543 with 
constant T.  averaged over half-width and all . 

Mode type is most common in half-width.

χi/χe Δped βθ,ped

χi/χe kyρi

Constant T
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Transport Picture: Ions Vs. Electrons

• Consider , relative heat diffusivity of 
ions and electrons. 

• Relative ion diffusivity maximum in GCP 
unstable region.

χi/χe

Constant T

Fig 1:  versus  and  for NSTX 132543 with 
constant T.  averaged over half-width and all . 

Mode type is most common in half-width.
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χi/χe kyρi
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Transport Picture: Ions Vs. Electrons
Constant T

χi/χeQe/Qi
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Transport Picture: Ions Vs. Electrons
Constant T

χi/χeQe/Qi

 profile explains  profile at constant T.χi/χe Qe/Qi
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Transport Picture: Ions Vs. Electrons
Constant T

χi/χeQe/Qi

 profile explains  profile at constant T.χi/χe Qe/Qi
Consider constant n
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Transport Picture: Ions Vs. Electrons
Constant n
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Transport Picture: Ions Vs. Electrons
Constant n

Qe/Qi

Constant T
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Transport Picture: Ions Vs. Electrons
Constant n

Qe/Qi

Constant T
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Transport Picture: Ions Vs. Electrons
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Transport Picture: Summary
Constant n Constant T
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• ITG —> KBM —> ETG 
increases Qe/Qi

• MTM —> KBM —> MTM/ETG 
decreases Qe/Qi
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Transport Picture: Summary
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• ITG —> KBM —> ETG 
increases Qe/Γe

• MTM —> KBM —> MTM/ETG 
complicated Qe/Γe
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Transport Picture: Summary
Constant n Constant T
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• ITG —> KBM —> ETG
• MTM —> KBM —> MTM/ETG 

complicated Qe/Γe

MTM

KBM



Backup Slides
Unstable pedestals sit at maximum electron diffusivity points.
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Constant n Constant T
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Backup Slides
Constant T pedestal sits at a minimum  state. Presence of ITG in constant n gives very low  for constant n.Qe Qe
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T, n trajectory plots… Constant T
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Difference b/w low-A BCP and our results.
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• BCP assumes that both density and 
temperature profiles can be fit with 
tanh.  

• In 132543 case, there is no 
parameterized temperature pedestal 
if the fit is bad. Density pedestal 
usually fits extremely well. We take 

.Δp,ped = Δn,ped



Backup Slides
NSTX 132543 Profiles,  
Constant T
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Kinetic, Ideal Comparison

• Difference in kinetic and ideal 
boundaries apparent from s-alpha 
diagram.
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Kinetic, Ideal Comparison

• KBM and ideal  diagram.̂s − α
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Kinetic, Ideal Comparison

• KBM and ideal  diagram. 

• KBM critical  much lower than ideal.

̂s − α

α

KBM unstable, 
ideal stable 

region
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Kinetic, Ideal Comparison

• KBM and ideal  diagram. 

• KBM critical  much lower than ideal. 

• Lower KBM threshold crucial for accurate 
 scaling.

̂s − α

α

Δ

KBM unstable, 
ideal stable 

region


