

DE LA RECHERCHE À L'INDUSTRIE

Numerical study and control of divertor detachment: impact of divertor geometry, particle and energy sources

Hao YANG et al.

- Background
- Numerical modeling
- Detachment characteristics
- Impact of divertor closure/impurity
- Simplified model
- Detachment control
- Conclusion

The interior of Tokamak West

Background [see for ex. C, S, Pitcher & P, C, Stangeby. (1997) 779–930]:

- Divertor: plasma-wall interaction and the exhaust of heating power (~40 MW/m² for ITER)
- Detachment: spreading power over larger surfaces through radiation and keeping target heat loads at manageable levels (≤10 MW/m2)
- Raising plasma density, impurity seeding, input power
- Erosion and melting of edge structure are reduced when detached

Difficulties:

- Deep detachment may lead to a reduction in the performance of core plasma
- Control of degree of detachment
- Measurements

IRfm

- Predicting edge plasma properties
- Fluid model
- Multi-species Zhdanov closure
- Kinetic neutrals implemented via coupling to EIRENE
- Immersed boundary condition methods, enabling simulations with complex wall geometries

Numerical tools: Simulation control script

- Be able to mimic the operation in the experiment
- Control multiple parameters with feedback (time delay, radial profile, diff map)
- FD 5-10 times faster than constant puff rate to reach a steady state
- Manage the calculation resources

Puff rate =
$$k_n \left(k_P * e(t) + k_i * \int e(t) dt + kd * \frac{d}{dt} e(t) \right) + bg$$

- e(t) = measured value target value
- $k_n = normalized factor$
- $k_{P} = \text{proportional gain}$
- $k_i = \text{integral gain}$
- $\mathbf{k}_{d} = \text{derivative gain}$
- bg = background value

Cea

Numerical modeling: WEST L-mode

Operation parameters of WEST #56420@7.3s in C5 campaign

Major radius R_0 (m)	2.5
Minor radius a (m)	0.4
Plasma volume (m^3) t=7.3s	15
Plasma current I _p (MA)	0.6
Toroidal field $B_t(T) @ R_0$	3.6
Heating power $P_{in,total}(MW)$	0.663
Core radiated power $P_{rad}^{core}(MW)$	0.168
Upstream separatrix density $(1e19/m^3)$	2.47

Simulation setups

- 1) Pure deuterium
- 2) $n_{e,sep} = 2.47 [10^{19}/m^3]$ (D puff Feed-back control)
- 3) Input power $P_{in} = P_{heat} P_{rad}^{core} \simeq 0.45$ [MW]
- 4) $\chi_e = \chi_i = D_\perp / 0.3$, $\nu = 0.3 \ [m^2 s^{-1}]$
- 5) Recycling coefficient $R_{wall} = 1$, $V_{pump} = 35 [m^3 s^{-1}]$
- 6) Drifts (ExB, GradB, CurvB), Ballooning

OMP

Outer target

Numerical modeling: WEST L-mode, real-time scan

- Wall saturate state can influence the relationship between gas puff and plasma density
- Numerical simulation can reproduce the detachment process close to the one in real experimental shots

Simulation setups

Reference shot number	#70690@t=1s
Plasma composition	D,C
Recycling coefficients	Rwall,D = 0.99 Rwall,C = 0.5
Pedestal temperature	Ti = Te = 405eV
Upstream electron density (/m3)	1.36e19
Drifts	Νο
Transport coefficients	Diff $\propto P_{neu}/B$ $\chi_{\perp,i}, \chi_{\perp,e}$ non-constant $\chi_{\perp,i} = 2\chi_{\perp,e}$ inside LCFS $\nu = 0.2 \text{ m}^2/\text{s}$
Sputtering	The physical: Bohdansky model The chemical: Roth model

Results

Para	SIM	EXP		
Input power[kW] (npsi >=0.8)	Pin,e = 76KW Pin,i = 137 KW	Pin,total ∼251KW		
Sputtering estimation	2.87% (outer strike point) 3.90% (inner strike point)	-		
P _{neu,baffle} [mPa]	36.8	34-36		
P _{neu,omp} [mPa]	0.7	1-10		
Electron density [1e19/m ³]	P _{neu} recalculated based on M Wens 5 4 5 4 E_{1} 0 1 0 0.6 0.8	ing et al 2019 PPCF 61 08502 $-n_{C}^{6+}$: SIM $-I - n_{C}^{6+}$: EXP Separatrix 1 - 1.2 - 1.4 ψ_{N}		

cea **Detachment characteristics**

 $P_{rad,front} = 0.7P_{rad,max}$ Normalized $H_{rad,front} = H_{rad,front}/H_{X-point}$

When detachment happens:

- Low target temperature (few eV), heat flux ٠
- Rollover of particle flux (Constant P_{in} , low c_z) ٠
- Detach of radiation front
- High fraction of power radiated ٠

0.6

0.4

0.2

0

0.6

0.4

0.2

0

0.6

0.4

0.2

0

0.6

0.4

0.2

0

Cea Impact of baffle leakage in WEST

The case with less leakage:

- Better performance in trapping the neutral particles
- Higher neutral pressure near the target
- Greater momentum and power dissipation in the divertor
- Lower detachment threshold in n_{e,sep}

Cea

Impact of baffle leakage in WEST

Impact of impurities: N seeding in TCV

N seeding with the same core temperature:

- Maintain the same amount of power radiated with less input power required
- Reduce $n_{e,sep}$, $P_{neu,div,}$, when detached
- Radiate higher fraction of power

Pneu [Pa]

Cea

Impact of impurities: N seeding in TCV

- Nitrogen accumulates in the region of low temperature close to the target
- Lower the height of the radiation front (high c_N case)

Impact of impurities and baffle closure in TCV

Simplified model: semi-detachment prediction

- Based on an experimental formula (least-squares fitting of nonnegative functions of Tdiv versus Psep/R and the weighted pressures)
- Arbitrary-sized device with closed divertor
- high values of $f_z c_z$ (saturation of the divertor radiation)
- Semi-detached when $q_{det} = 1$, verified in AUG

[A Kallenbach et al 2016 PPCF 58 045013]

P _{sep}	Overall power through SEP
R _{det,point}	0.8 m (position of outer strike point)
P ₀	Mean neutral pressure under baffle (marked by blue)
fz	18 (Relative efficiency of N for detachment achievement compared to deuterium)
Cz	P _{neu,N,div} /P _{neu,D,div} (Ratio of mean pressure along divertor outer leg)
λ_{int}	L_int = lambda_q+1,64S S~lambda_q/2 (lambda_q is evaluated on the OMP profile)
R	0.9 m (Major radius)
r _z	0,1 (weak exponent of N for the size dependence of detachment onset)

Cea Simplified model: XPR prediction

0.5

Saturate current of LP

Detachment with particle flux controlled

Detachment with upstream density controlled

R(m)

2.3

2.4

2.5

Prad [MW/m3]: 0s

-0.35

-0.4

-0.45

-0.5

-0.6

-0.65

-0.7

-0.75

-0.8

2

2.1

2.2

(u) Z^{-0.55}

Similar strategies were used in JET, EAST, DIII-D, KSTAR [Eldon 2022 PPCF, C Guillemaut 2017 PPCF, etc.]

Cea Detachment control: Bolometry

Posttreatment based on Syndi [P Devynck 2021 J. Phys. Commun]

Detachment control: Time delay

Suppose: Puff frequency >= data sampling frequency

- The feedback control is still effective with high gain value when the time delay is less than 5ms
- Time delay influence can be mitigated by decreasing the gain value or using ramped target as a buffering

Items	Measurements	Controllable plasma		Detachment threshold			
		Pure D or Low c _z	High c _z	Baffle leakage WEST	Baffle closure TCV	Impurities TCV	Comments
Gas puff							Influenced by wall saturation state
Upstream SEP density	Reflectometry						Narrow range for cases with impurities
Target temperature	<5eV			2.4eV	2.4eV	Low c _z	Detachment dependent para
Parallel heat flux	IR			4.2MW/m ²		2.7MW/m ²	Detachment dependent para
Normalized radiation front height				0.1			
Target saturate current	LP	Fixed P _{in}		Rollover			No obvious rollover with high cZ
Divertor neutral pressure	Baratron gauges						
q _{det}	c _z						ideal situation
RHS	c _Z				0.24	0.24	Consistent threshold for TCV cases
Prad,div	Bolometry						Short time delay
Line integral density near X point	Interferometry						
ХА	P _{0,X}					1.14×10^{34}	

Under investigation

- Radial non-constant transport coefficients obtained by the feedback control method are applied in the simulation, allowing a better match with experimental results
- The detachment process is reproduced through the SOLEDGE-EIRENE transport code
- The impact of multiple factors on detachment properties in WEST/TCV is investigated
- Some parameters are found to be highly related to detachment, and its threshold value is not influenced by baffle closure or impurities concentration
- Next step: High input power case, WEST case with impurities, and more diagnostic methods

THANK YOU FOR YOUR ATTENTION

Annex: WEST

Cea

Cea Annex: TCV

Cea Annex: TCV

Numerical modeling: WEST L-mode, real-time scan compare

Hao YANG | Numerical study and control of divertor detachment | November 2022

Impact of drifts

• Mainly influence the LFS

C22

- The stagnant point of LFS moving toward the inner target
- More power flow into the outer target, increasing the Te
- Higher the detachment threshold
- The peak of density profile closer to SEP on outer target

Commissariat à l'énergie atomique et aux énergies alternatives

Hao YANG | Numerical study and control of divertor detachment | November 2022

Ceal Impact of impurities: Oxygen in WEST

Oxygen seeding from the core With constant input power (0.25%, 0.75%)

- Increase the temperature along SEP
- Lower the plasma density, and neutral pressure near X-point
- Delay or prevent the rollover of particle flux at the outer target