

Aix Marseille Université

Numerical modeling of core-edge turbulent transport in realistic tokamak geometry by an advanced numerical tool

NSTX-U team meeting 14-11-2022

Manuel Scotto d' Abusco^{1,2}

¹ Aix-Marseille University-CNRS, M2P2, Ecole Centrale Marseille ² IRFM, CEA Cadarache

Introduction

Energy from fusion in magnetically confined devices

- \rightarrow The heat and particle exhaust issues in ITER
- → Investigation and prediction of the perpendicular turbulent transport

Numerical modeling:

ix*Marseille

- → Support and interpretation of experimental measures
 → Become predictive
- Challenges in the plasma numerical modeling:
 - Complex magnetic (X-point, close-open field lines) and wall geometries
 - → Multiphysics and multiscale problem: from fluid turbulence to atomic physics
 - \rightarrow Strong anisotropy
- Different level of analysis:
 - → Model Hierarchy

Current 2D/3D fluid approach: flux-aligned scheme

- Drift-reduced fluid model: $\lambda_c \gg \rho_L$, $\omega \ll \Omega_{c,i}$
- Current state-of-the-art averaged fluid codes based on flux aligned discretization, SE3X [H. Bufferand, NF, 2015], SOLPS-ITER [S. Wiesen et al., JNM, 2015]

Benefits

- \rightarrow More efficient numerically in term of DoF and implementation
- → Alignment to reduce numerical diffusion induced by anisotropy

Disadvantages

- \rightarrow Inaccurate description of complex tokamak geometry
- → Difficulty to handle singularity in the magnetic field: X point, core center
- \rightarrow Static magnetic equilibrium

An original approach

- Development of an high-order finite elements method (Hybrid Discontinuous Galerkin HDG) + implicit time integration [Giorgiani et al. J. Comp. Phys. 2018]
 ITER
 in the SOLEDGE3X suite of codes
 - → MPI-OMP SOLEDGE3X-HDG [Giorgiani *et al.* Comp. Phys. Com. 2020]
 - Non-aligned discretization: unstructured meshes
 - Accurate description of PFCs
 - Full tokamak cross section
 - Magnetic equilibrium free
 - \rightarrow High-order
 - Reduced DoF
 - \rightarrow Full implicit time
 - Long time integration for full experimental discharges

Outlines

- Mathematical and numerical model
- Verification and validation
- Core-edge coupling and sources
- Preliminary investigation of a detached plasma
- Full 2D transport simulations of an entire experimental discharge
- Steady vs transient

The mathematical model

Braginskii 2D fluid reduced model [Braginskii 1965]

$$\begin{aligned} \partial_t n + \nabla \cdot (nu\mathbf{b}) - \nabla \cdot (D\nabla_{\perp} n) &= S_n \\ \partial_t(m_i nu) + \nabla \cdot (m_i nu^2 \mathbf{b}) + \nabla_{\parallel} (k_b n(T_e + Ti)) - \nabla \cdot (\mu \nabla_{\perp} (m_i nu)) &= S_{\Gamma} \\ \partial_t \left(\frac{3}{2} k_b nT_i + \frac{1}{2} m_i nu^2\right) + \nabla \cdot \left(\left(\frac{5}{2} k_b nT_i + \frac{1}{2} m_i nu^2\right) u\mathbf{b}\right) - nueE_{\parallel} - \nabla \cdot \left(\frac{3}{2} k_b (T_i D \nabla_{\perp} n + n\chi_i \nabla_{\perp} T_i)\right) \\ - \nabla \cdot \left(-\frac{1}{2} m_i u^2 D \nabla_{\perp} n + \frac{1}{2} m_i \mu n \nabla_{\perp} u^2\right) - \nabla \cdot (k_{\parallel i} T_i^{\frac{5}{2}} \nabla_{\parallel} T_i \mathbf{b}) + \frac{3}{2} \frac{k_b n}{\tau_{ie}} (T_e - T_i) = S_{E_i} \\ \partial_t \left(\frac{3}{2} k_b nT_e\right) + \nabla \cdot \left(\frac{5}{2} k_b nT_e u\mathbf{b}\right) + nueE_{\parallel} - \nabla \cdot \left(\frac{3}{2} k_b (T_e D \nabla_{\perp} n + n\chi_e \nabla_{\perp} T_e)\right) - \nabla \cdot (k_{\parallel e} T_e^{\frac{5}{2}} \nabla_{\parallel} T_e \mathbf{b}) \\ - \frac{3}{2} \frac{k_b n}{\tau_{ie}} (T_e - T_i) = S_{E_e} \end{aligned}$$

$$\tag{1}$$

- Plasma-wall interactions prescribed by the Bohm boundary condition:
 - \rightarrow Outgoing supersonic velocity
 - \rightarrow Parallel heat fluxes imposed to the sheat transmission values

 $u \ge c_s \qquad if \quad \mathbf{b} \cdot \mathbf{n} > 0$ $u \le -c_s \qquad if \quad \mathbf{b} \cdot \mathbf{n} < 0$

The HDG method

HDG:HIGH ORDER finite element method based on **HYBRID DISCONTINUOUS** Galerkin [G.Giorgiani,J.C.Physics,2018]

 High Order: the solution is approximated by an high-order polynomial in each element

Discontinuous:

- Resolution of local problem posed in weak form;
- Duplication of the nodes at the element borders;
- Global problem derived by weakly imposing the continuity of numerical fluxes across the borders;
- **Hybrid:** introduction of new unknowns, called trace solutions, defined on the element border. Reduction of DOF.

The HDG formulation: local probelm

Local problem in each element for the conservative variables U , $\mathbf{Q} =
abla \mathbf{U}$

$$\boldsymbol{U} = \begin{cases} U_1 \\ U_2 \\ U_3 \\ U_4 \end{cases}, = \begin{cases} n \\ nu \\ nE_i \\ nE_e \end{cases} \quad \boldsymbol{Q} = \nabla \boldsymbol{U} = \begin{bmatrix} \nabla \boldsymbol{U}_1^T \\ \nabla \boldsymbol{U}_2^T \\ \nabla \boldsymbol{U}_3^T \\ \nabla \boldsymbol{U}_4^T \end{bmatrix} = \begin{bmatrix} U_{1,x} & U_{1,y} \\ U_{2,x} & U_{2,y} \\ U_{3,x} & U_{3,y} \\ U_{4,x} & U_{4,y} \end{bmatrix} = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \\ Q_{31} & Q_{32} \\ Q_{41} & Q_{42} \end{bmatrix}$$

$$\begin{cases} \boldsymbol{Q} - \boldsymbol{\nabla} \boldsymbol{U} = 0 & \text{in } \Omega_i \times]0, T_f[\\ \partial_t \boldsymbol{U} + \boldsymbol{\nabla} \cdot (\boldsymbol{F} - D_f \boldsymbol{Q} + \boldsymbol{Q}_f \boldsymbol{Q} \boldsymbol{b} \otimes \boldsymbol{b} - \boldsymbol{F}_t) + \\ \boldsymbol{f}_{E_{||}} + \boldsymbol{f}_{EX} - \boldsymbol{g} = \boldsymbol{s} & \text{in } \Omega_i \times]0, T_f[\quad (2) \\ \mathbf{U}(\mathbf{x}, t) = \hat{\mathbf{U}}(\mathbf{x}, t) & \text{in } \partial \Omega_i \times]0, T_f[\quad in \\ \mathbf{U}(\mathbf{x}, 0) = \mathbf{U}_0 & \text{in } \Omega_i \end{cases}$$

convection+diffusiondiffusion(isotropic part)(anisotropic part)

Parallel Diffusion

→ a elemental solution for the vector U, Q is recovered in each element in function of the trace unknown \hat{U}

The HDG formulation: global problem

• \hat{U} is the actual unknown of the problem determined by setting up the following global problem:

$$\left\langle \hat{\boldsymbol{v}}, \left(\boldsymbol{F} - D_f \boldsymbol{Q} + D_f \boldsymbol{Q} \boldsymbol{b} \otimes \boldsymbol{b} - \boldsymbol{F}_t\right) \boldsymbol{n} + \boldsymbol{\tau} \left(\boldsymbol{U} - \hat{\boldsymbol{U}}\right) \right\rangle_{\mathcal{T} \setminus \partial \Omega} + \left\langle \hat{\boldsymbol{v}}, \boldsymbol{B}_{BC} \right\rangle_{\partial \Omega} = 0$$

$$\neq \mathcal{T} = \bigcup_{i=1}^{N_{el}} \partial \Omega_i \quad \text{mesh skeleton}$$

$$\neq \boldsymbol{B}_{BC} \text{ is a flux vector which defines the boundary condition on } \partial \Omega.$$

$$(4)$$

• U and Q solution of the local problem Eqs. (3) in function of \hat{U}

Hybridization

- → Eq. (4) wakly imposes the normal fluxes at the element boundary and it depends only by the unknown \hat{U}
- \rightarrow reduce the size of the linear system generated by the element discretization

Outlines

- Mathematical and numerical model
- Verification and validation
- Core-edge coupling and sources
- Preliminary investigation of a detached plasma
- Full 2D transport simulations of an entire experimental discharge
- Steady vs transient

Verification of the code

- ► MMS : code verification in realistic tokamak geometry → entire 2D cross section
 - \rightarrow scan in the order of the polynomial of interpolation p = 1, ..., 4
 - → scan in the characteristic length *h* of each element $h = 1/2^m for m = 1, ..., 5$
- Analytical solution $U_{\mathbf{a}}$ considered for all the variables

 $n = 2 + \sin(2\pi x)\sin(2\pi y) \qquad u = \cos(2\pi x)\cos(2\pi y)$ $E_i = 20 + \cos(2\pi x)\sin(2\pi y) \qquad E_e = 10 - \sin(2\pi x)\cos(2\pi y)$

Cartesian magnetic field + Dirchlet BC

$$b_x = \frac{1}{30}(x - y^2 + 2)$$
 $b_y = \frac{1}{30}(xy + y)$

• \mathcal{L}^2 error defined as the distance between the numerical solution U and the exact solution of the modified problem U_a

$$\mathcal{L}^2 = \sqrt{\int_{\Omega} \left(\mathbf{U} - \mathbf{U}_{\mathbf{a}} \right)^2}$$

Benchmarking with SE3X (1/2)

• Comparison with the well established code SE3X in WEST geometry [H. Bufferand, NF, 2015]

Benchmarking with SE3X(2/2)

- Good agreement in between SE3X and SE3X-HDG profiles
- Small discrepancy in the far SOL especially in ion and electron mid-plane profiles
 - \rightarrow geometry discretization
 - → different numerical method: Finite Volume for SE-3X vs Finite Element for SE-HDG
 - \rightarrow time of computation: 40 m SE3X-HDG, 12-14h SE3X

The benchmark test is satisfying making us confident on the non-aligned approach !!

Outlines

- Mathematical and numerical model
- Verification and validation
- Core-edge coupling and sources
- Preliminary investigation of a detached plasma
- Full 2D transport simulations of an entire experimental discharge
- Steady vs transient

Core-edge coupling and sources

- Enrich core physics allowing to study
 - → Plasma heating
 - \rightarrow Energy redistribution
 - → Transport of impurity
 - → Full experimental discharge simulation with variable magnetic equilibrium
- Source location is a critical point in plasma simulation
 [D. Galassi, PoP, 2022]
 - \rightarrow Remove and replace the badly posed Dirichlet/ Neumann BC
 - \rightarrow Extension of the domain of computation up to the core
 - \rightarrow Investigation of the entire tokamak cross-section
- Need sources to get a stationary state in the whole domain
 - \rightarrow Development of self-consistent sources of particle and energy
 - Source of particle: Neutral Model
 - Source of energy: Ohmic Heating

Neutral model

Crucial role due to strong interaction with plasma

Kinetic approach + Monte-Carlo solver: EIRENE [D. Reiter et al., FSaT, 2005]

- \rightarrow Rich and accurate in term of physics
- \rightarrow Slow convergence in high collisional regime

 Diffusive fluid neutral + plasma recycling at wall (charge exchange dominated regimes) [Horsten et al., NF, 2017]

$$\partial_t n_n - \nabla \cdot (D_{n_n} \nabla n_n) = S_{n_n, iz} + S_{n_n, rec} + S_{n_n}$$
$$- D_{n_n} \nabla n_n \cdot \mathbf{n} = -R(-D_{n_n} \nabla n \cdot \mathbf{n} + nu\mathbf{b} \cdot \mathbf{n})$$

→ coupled to plasma with ionization-recombination-radiation terms $S_{n,iz}$, $S_{n,rec}$, $S_{\Gamma,cx}$, $S_{\Gamma,rec}$, $S_{E_i,iz}$, $S_{E_i,cx}$, $S_{E_i,rec}$, $S_{E_e,iz}$, $S_{E_e,rec}$: linear system for 5 Eqs. (4 for plasma + 1 for neutrals)

• Source of particle to fill up the core region

- \rightarrow Easly implementable in the HDG framework
- \rightarrow Allows to compute fast steady state solution (2h-6h in WEST geometry)
- \rightarrow More realistic description of plasma behaviour close to the target

Ohmic source

• Ohmic source of power given by

$$S_{Ohmic} = \eta j^2 = 0.51 \frac{m_e^{1/2} e^2 ln\Lambda}{3(2\pi)^{3/2} \epsilon_0^2} \frac{1}{T_e^{3/2}} j^2$$

Spitzer Harm resistivity

- → Current density 2D distribution from equilibrium experimental reconstruction
- \rightarrow Non linear coupling with plasma temperature
- Easily implementable for other sources: \rightarrow RF, ICRH, ECRH, LH ...

Outlines

- Mathematical and numerical model
- Verification and validation
- Core-edge coupling and sources
- Preliminary investigation of a detached plasma
- Full 2D transport simulations of an entire experimental discharge
- Steady vs transient

Density scan toward plasma detachment

- Analysis of plasma detachment achievement
 - \rightarrow Double single null magnetic configuration as in benchmark test with SE3X
 - $\rightarrow D = \mu = \chi_i = \chi_e = 1 \ m^2/s$
 - \rightarrow Ohmic source of power in the core
 - \rightarrow Neutral model + plasma recycling with R = 0.99
 - → Prescribed puff with $D_{n_n} = 1000 \ m^2/s$.

Analysis with the 2 point model (2PM)

- Clear evidences of plasma detachement
 - → Comparison with 2PM predicted slopes 10²⁰ for n_t , Γ_t , $T_{e,t}$ in function of n_{up} indicates a transition from sheath limited to high $\frac{1}{2}$ recycling regime $\vec{z}_{10^{19}}$
 - \rightarrow Saturation and decrease of n_t
 - → Rollover of the flux of particle at the target contrary to 2PM which prescribes

Outlines

- Mathematical and numerical model
- Verification and validation
- Core-edge coupling and sources
- Preliminary investigation of a detached plasma
- Full 2D transport simulations of an entire experimental discharge
- Steady vs transient

Full WEST disharge: shot #54487

- 2D transport simulation of an entire experimental discharge
 - → impact of the transient phase: limiter-divertor(L-D)
 - \rightarrow comparison with experimental data
 - \rightarrow analysis of fluxes at the PFCs
 - \rightarrow impurity contamination (W)
- Magnetic equilibrium and current 2D distribution from experimental reconstructuion
 - → WEST shot #54487 (pure Ohmic discharge)
- Numerical and physical parameters

$$\rightarrow D = \mu = \chi_i = \chi_e = 0.5 \ m^2/s \ D_{n_n} = 2000 \ m^2/s$$

$$\rightarrow$$
 dt = 0.02 s

- \rightarrow R = 0.998 + experimental puff rate
- → 403 different equilibriums for a total time of integration of 10 s
- → Real time of computation: 240 h, 1 node 32 cpus, OMP

WEST Shot #54487: 2D map of the fluid quantities

Aix*Marseille

WEST Shot #54487: comparison with experiments

[MS d'Abusco et al. N. Fus. 2022]

Interferometry data analysis:

ix*Marseille

- \rightarrow Qualitatively agreement with experimental data (ram-up, flat-top)
- \rightarrow Good reproductuon of central line integrated density (LoS 3,7,10)
- \rightarrow Imperfect agreement with line integrated density close to X-point (LoS 1, 2, 9)
- \rightarrow Inability to reproduce the last second of the discharge (8-9 s MHD) events, instabilities ecc ...)

WEST Shot #54487: quantities at PFCs vs Time (1/2)

 $\log_{10}(q_{||,e} \cdot n) [W/m^2]$

left limiter

300000

100000

30000

10000

3000

1000

300

2.5

0.5

lower divertor

• $\Gamma, q_{\parallel,i}, q_{\parallel,e}$ in function of wall coordinates (Log Scale):

Aix*Marseille

• Γ , $q_{\parallel,i}$, $q_{\parallel,e}$ at lower divertor (Linear Scale):

Fluxes cocentrated on the \rightarrow HFS limiter for t < 1 s

 \rightarrow Peaks reached at the L. Div. with maximum located at the outer target (LFS)

→ $(q_{\parallel,i} \cdot n) > (q_{\parallel,e} \cdot n)$ in the stationary phase contrary to transient phase

 \rightarrow Location of the peaks spreads in time along L. Div. coordinates

[MS d'Abusco et al. N. Fus. 2022]

WEST Shot #54487: quantities at PFCs vs Time (2/2)

Aix*Marseille

- Temperatures 2D map: → erosion Map
- $\propto \Gamma \cdot \mathbf{n} Y(T_{i,e}, Zeff)$
- $\rightarrow E_{impact} = \text{energy to}$ release a W atom in a D-W head collision

[P. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices, 2000]

[MS d'Abusco *et al*. N. Fus. 2022]

WEST Shot #54487: Tungsten evolution using ERO

 SOLEDGE3X-HDG plasma backgrounds post processed by ERO 2.0 to compute the evolution of tungsten density

→ Start-up phase:

sputternig mainly concentrated on the high field left limiter and antenna and high core contamination

\rightarrow X-point onset:

sputtering mainly concentrated on the diverotr target (Upper and Lower)

- Good qualitative agreement with the crude cinematic model
 - → Reproduction of the sputtering peak approximately at the same time t = 0.4 s

Tungsten Contamination

HDG #54487 background → ERO 2.0 [Montecarlo 3D code J. Romazanov et al., NME, 2019]

Outlines

- Mathematical and numerical model
- Verification and validation
- Core-edge coupling and sources
- Preliminary investigation of a detached plasma
- Full 2D transport simulations of an entire experimental discharge
- Steady vs transient

WEST Shot #54487: Steady vs transient

Comparison with steady simulation performed at the flat top phase t = 4.510 s

 \rightarrow higher value of plasma density in the unsteady computation than in the steady one

The system doesn't reach the steady state over the time step of computation

[MS d'Abusco *et al.* N. Fus. 2022]

 $\frac{1}{\tau_c} = \frac{\int_{\Omega} \partial_t n d\mathbf{x}}{\int_{\Omega} n d\mathbf{x}} |_{t=4.51} = -3.15 \times 10^{-4} s^{-1} \implies \tau_c = 3 \times 10^4 \ s \text{ time scale to reach stationary state}$ $\frac{\partial N}{\partial t} = \frac{N}{\tau_c} + Q_{puff} \implies N(t) = Q_{puff} \tau (1 - e^{-t/\tau_c}) + N_0 e^{-t/\tau_c}$

 \rightarrow total number of particle relaxes to $Q_{puff} \times \tau_c$ over a time scale τ_c much grater than $dt = 0.02 \ s$

Steady vs transient in ERO

• Calculation with transient phase:

→ Evolution of the SE3X-HDG plasma backgrounds since the beginning of the discharge up to t = 1.02 s: Left plot

• Steady:

 \rightarrow Fixed plasma bakground at t = 1.02 s: **Right plot**

Higher core tungsten contamination when the transient phase is accounted

→ Tungsten density in the core 3 times greater for transient simulation vs steady case

Concluding remarks

- Core-edge transport fluid simulations have been performed in realistic tokamak geometry including transient phases: from start-up to shut-down
- Thanks to the new capabilities of the SOLEDGE3X-HDG: non-aligned grid + efficient time integration scheme + «self-consistent» sources

Physics highlights

- Heat fluxes estimation
 - \rightarrow Switch in the dominant power heat flux from electrons to ions in different phases of the discharge
 - \rightarrow Spreading in time of the power heat flux peaks along the divertor coordinates
- W sputtering and concentration:
 - \rightarrow Impact of the limiter-divertor transition: strong W contamination

This work confirms the interest on developing magnetic equilibrium free solver to support experimental data analysis and to target predictive capabilities in the future.

Future works and developments

Physics investigation:

 \rightarrow Investigation of energy equipartition problem by simple linear model: $\tau = \frac{T_i}{T_i}$

• Two-short terms physical model improvements:

- → Reduced model for cross-field transport: **k-epsilon**
- Neutral sources: Advanced fluid model then EIRENE coupling

Numerical improvments increasing the DoF:

- \rightarrow 2D
 - Bigger size Tokamak simulations → ITER plasma volume ≈ 30 times WEST
 - Multi-species problem
- ightarrow 3D
 - Transport simulation in non-axisymmetric geometries or with 3D magnetic perturbation
 - Impact of 3D plasma facing components on transport proprieties and impurities
 - 3D turbulent simulation at ITER scale

Preliminary results for future works

2D turbulent fluid model in SLAB geometry: \rightarrow SLAB geometry

Courtesy of

First ITER real size simulation:

- \rightarrow SOLPS-ITER like wall geometry
- \rightarrow 2D non-isothermal model + fluid neutrals

