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FIRST WALL HEAT LOADS

Engineering constraints

« Large electricity production

 Heat loads on the first wall

e Superconducting magnets

« Maximum allowable stress on the support structure

_ _ first wall
Plasma-wall interaction challenge |

* No perfect core plasma confinement

« Power crossing separatrix

* Flux lines intersecting wall

« Power loads restricted to a small wetted area

« |f all SOL power strikes the divertor plates, peak loads
might be intolerable

divertor




OUTLINE

Heat load modeling for the engineering systems code Bluemira

* Charged Particle model

* Radiation source model



HEAT LOAD MODELING FOR THE ENGINEERING SYSTEMS CODE BLUEMIRA

Goal: defining a procedure to design a preliminary first wall profile and
estimate expected heat loads as support of the engineering phase

Main requirement: quick and sufficiently reliable

Current state:

* First wall shape design
* First wall heat flux calculation due to charged particles

e First wall heat flux calculation due to radiation



FIRST WALL SHAPE DESIGN & HF CALCULATION DUE TO CHARGED PARTICLES

INPUT:

Equilibrium

I:)SOL

q
*First Wall Profile

If FW is in INPUT: 2-D Heat Flux

distribution on the

2-D Heat Flux wall profile

calculation

If FW is not In

INPUT:;
2-D Heat Flux

distribution on the

Make preliminary b :
preliminary profile

First Wall profile

(addtional geometrical inputs)

Optimise First
Wall Profile



FIRST WALL SHAPE DESIGN & HF CALCULATION DUE TO CHARGED PARTICLES

INPUT: if FW is not in

INPUT:
2-D Heat Flux Optimise First

Wall Profile

Equilibrium
PsoL Make preliminary
A First Wall profile

*First Wall Profile (addtional geometrical inputs)

distribution on the
preliminary profile




FIRST WALL SHAPE DESIGN & HF CALCULATION DUE TO CHARGED PARTICLES

if FW is not in
INPUT:;

Make preliminary
First Wall profile

(addtional geometrical inputs)

» Main chamber shaping
» Divertor parametrization
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FIRST WALL SHAPE DESIGN & HF CALCULATION DUE TO CHARGED PARTICLES

10.0F
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FIRST WALL SHAPE DESIGN & HF CALCULATION DUE TO CHARGED PARTICLES

Optimise First

Wall Profile

» Heat Flux limit (user input)

» Local first wall reshaping

z [m]
z [m]

0.10

0.08

(=]
=3
[=)]
Heat Flux [MW/m~™2]

0.04

0.02



FIRST WALL SHAPE DESIGN & HF CALCULATION DUE TO CHARGED PARTICLES

Outcome:

e Results benchmarked against SMARDDA11

e t<?l

* Flexible set of input params
e The module has been widely appreciated and used

outside bluemira

» Suitable for a sensitivity analysis/robust design

e Suitable for cross functional team work
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FIRST WALL SHAPE DESIGN & HF CALCULATION DUE TO CHARGED PARTICLES

Limit:

Non-axisymmetric scenario

—p tile gaps, edges, apertures 75t

Divertor loads
- power to be exhausted
by radiation
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FIRST WALL HEAT FLUX CALCULATION DUE TO RADIATION

Potential steady-state scenario:
* Fusion power ~ 2GW
* Alpha + auxiliary heating to be exhausted ~ 500MW
o Core ~ 350MW
o SolL ~150MW
» Detailed calculation of radiation distribution requires high-fidelity modelling
* Time
* Uncertainty == need of full understanding on transport processes

Simple assessment:
» Core radiation source

» Sol radiation source

» Coupling with CHERAB
—> First wall heat flux

13



FIRST WALL HEAT FLUX CALCULATION DUE TO RADIATION

> Core radiation source dp!_ ;
e, Imp

2
— }ij f 17 9 ’ (}?'.73 T)) #
> Sol radiation source AV j}n.*p e * line-LF, Imp\'"e> *¢

» Coupling with CHERAB

Core:
* Te >300eV

— low-Z impurities fully stripped — main contribution from bremsstrahlung
e Synchrotron radiation currently not included

— less Xe in the core to radiate same amount of power

— Radiation distribution may slightly change — peak in the core

— No significant impact on the first wall heat flux

T, n
Impurity data
Atomic databases
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FIRST WALL HEAT FLUX CALCULATION DUE TO RADIATION

» Core radiation source

* [Jean, FST (2011)]

and

(

\

r

p2 Qp
”[)(’d " B (IIO — ”[J(’d) == >
pped
for 0 = P o pped
I —p
Ngep + (n ped — 1 sep)
g = Pped

forp s =p=]

pB'I' ar
pul o (TO pul) = Br
pp('d

for0=p = pped
—p
o ppul

orpua=p=l .

Tsep i (7;1111 se, p)

10.0

715

5.0

2.5

=75

-10.0

T

0.40

0.35

0.20

0.15



FIRST WALL HEAT FLUX CALCULATION DUE TO RADIATION

» Sol radiation source

Two-Point model
2”;7} =ny Tu

172 _ 212, 1qL
< K0e

q| = vnikTicgy
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ely
(%)
Exponential decay

n(r) = nrcrs exp(—r/in)

T.(r) = Te LCEs exp(—r/AT,)

[Pitcher, PPCF (1997)]
[Stangeby, IPP (2000)]
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FIRST WALL HEAT FLUX CALCULATION DUE TO RADIATION

» Coupling with CHERAB
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FIRST WALL HEAT FLUX CALCULATION DUE TO RADIATION

Electron Temperature vs Electron Density Recycle 1620
Conduction Radiation 20
Outcome: :
* tsource~3
e ttracing ~ 30’ of T
* The module has been widely appreciated and ol e
used outside bluemira
—» Going to benchmark against MAST-U |
experimental results )\
et
Radiation 4.0
0.00 N~—]

Mid-Plane to Target
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OUTLINE

Wall load specification and wall shape design



WALL LOAD SPECIFICATION AND WALL SHAPE DESIGN

» From 2D to 3D analysis

> Providing inputs for PFC design e
» Found out about H.E.A.T. s IM

» Made contact with Tom Looby By

» Promoting the use =
— 08
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—02

— 0.0e+00
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Referral project
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TCV DIVERTOR UPGRADE
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* Vaccaro, D., Elaian, H., Reimerdes, H., et al., Thermal, electromagnetic and structural analysis of gas baffles for the TCV divertor upgrade, Fusion Engineering and Design 23
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TCV DIVERTOR UPGRADE

Goal:

* Avoiding neutrals generated by recycling at the divertor targets to escape into

Poloidal magnetic field Outer poloidal field coils

(for plasma positioning and shaping)

the main chamber

Design consideration:

 Thermal loads

* Electromagnetic loads

Design solution:

* Polycrystalline graphite (SGL R6650) e
o 32 tiles mounted on the HFS

o 64 tiles mounted on the LFS 26



TCV DIVERTOR UPGRADE

Guidelines
* Avoid exposure of leading edges = set-back
* Holes for diagnostics impose most severe constraints 2 ad hoc baffle

* Maintain compatibility with both magnetic field helicities 2 symmetric design

27




TCV DIVERTOR UPGRADE
Shielded effect is provided by two shadow zone

=  Upper part of the baffle surface is in the shadow of the wall

= Laterally baffle surface is in the shadow of the adjacent baffle
TCV 1({9902 t=0;5005
P '::,;;;\Q\\
| N\
C: Transient Thermal 06 g 1

19.08.2018 19:22

1.6276 Max
14467
12659
L0851
080421
072317
0.54253 .
035168

018084 7
01 Min

» The surface temperature

Terr: 435K < 2200K
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TCV DIVERTOR UPGRADE

Fraction of the plasma current is conducted through the baffle

Typical values expected in TCV
=250kA

I max
Input
= Magnetic field: 1.43 T
= Current: 4kA

Output

= \olumetric force

TOTAL FORCE
F,=425N
F,=-0.5N
F,(vertical) = 1090 N

0.6 0. 1.0
k=178, 8=0.21
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TCV DIVERTOR UPGRADE
The geometry at the screw is optimised to limit baffle deformation, displacement and

stresses (mainly in the graphite) to tolerable values

= Stresses lower than graphite limits
= Deformations and displacements between baffles to be avoided
= Movement in vertical and toroidal directions limited by 4mm and 2mm spacing, respectively

Washer: Titanium — Grade 5

Screw: Titanium — Grade 5

Tube: Stainless Steel — Grade 316 L‘

Baffle: Graphite SGL R6650

30



The force calculated by the ANSYS Maxwell Module generates a deformation that is
highest at the baffle tip

STRESS SPREADING

Screw

- ) TOTAL DEFORMATION
Max!mum tensile str-ess 32MPa | o ih 2% lower than limit D, =0.09 mm
Maximum compressive stress 80 MPa Dy =0.04 mm < 2mm

D, =0.25mm < 4mm

31



Extra slides

» Graphite and titanium coefficient of thermal expansion are characterized by close magnitude
» The thermal analysis which simulates baking operations shows that stresses due to thermal expansion
do not give cause for concern

" BAKING SIMULATION PRELOAD AND THERMAL CONDITION
O Tstare = 22

o Trinisn = 250° Maximum obtained tensile stress Maximum obtained compressive stress
mnmis
10.76 MPa 67.85 MPa

= Thermal Expansion
o Graphite: 3.5 x10® C!

o Titanium: 9.2 x10°% C? 65 150

SFrensite Stress = 10.8 =6 SFCompressive Stress — 67.9 = 2.2
32



HF CALCULATION — BENCHMARK DETAILS

Test on DEMO baseline 2017 and benchmark against SMARDDA4) (psol = 69MW, Pinner = 50%, Pouter = 50%)
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HF CALCULATION — BENCHMARK DETAILS

Test on DEMO baseline 2017 and benchmark against SMARDDA4) (psol = 69MW, Pinner = 50%, Pouter = 50%)
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