

Liquid metal PFC designs for fusion devices

R. Maingi¹, Head of Tokamak Experimental Science, on behalf of the U.S. domestic design team:

D. Andruczyk², D. Curreli², E. Emdee¹, R. Goldston¹, C.E. Kessel³, A. Khodak¹, M.S. Islam³, E. Kolemen^{1,4}, J.D. Lore³, R. Maingi¹, D. O'Dea², B.A. Pint³, R. Rizkallah², M. Romedenne³, F. Saenz⁴, S. Smolentsev³, Z. Sun¹, B. Wynne⁴, D.L. Youchison³

¹PPPL ²Univ. of Illinois ³ORNL ⁴Princeton U. NSTX-U / Magnetic Fusion Science Meeting 9 Jan 2023

A domestic program has identified Liquid Metal PFC design windows for a Fusion Nuclear Science Facility (FNSF)

- Goal: design LM PFC concepts for a nuclear device, i.e. FNSF or FPP
- Choices: analyze 1) Li, 2) divertor, 3) flowing PFCs
- **Design issues**: MHD flow instabilities, Li pumping through magnetic field, plasma/material interactions, corrosion/erosion/embrittlement,
- A design window to operate liquid Li divertor PFCs with low evaporation (i.e. < 450 °C) has been identified for a simplified FNSF geometry
 - Self-consistent between LM MHD, heat transfer and plasma modeling
 - Required Li PFC flow speeds ~ 5-15 m/s
 - Two options: a LM jet with high initial speed, and j x B driven flow
 - Li retained in divertor: upstream Li concentrations \leq 1% up to 10²³ Li flux
- <u>Experiments</u> for model validation and to test material and flow properties conducted in test stands and linear flow experiments with applied B
- NSTX-U Liquid Li PFC designs use concepts developed in the FNSF design

Solids are the leading options for plasma-facing components Tungsten chosen for the divertor & Be for the wall of ITER

- Tungsten (W) advantages
 - Low physical sputtering yield; high threshold
 - No chemical sputtering with hydrogen
 - Low in-vessel tritium retention at T < 500 °C
 - Reparable by plasma spray; good joining technology
- W disadvantages
 - Low allowable core concentration
 - Melts under large transient loads
 - High ductile-brittle transition temperature
 - Recrystallizes (embrittles) at temperatures >1500 K
 - High activation
 - Blisters and generates 'fuzz' under He bombardment

Maingi - NSTX-U/MFE Jan. 9, 2023 G. Federici, et. al., Nucl. Fusion 41 (2001) 1967

Liquid metal PFCs may be an attractive option to solid PFCs, but have substantial R&D needs to assess viability

- Advantages
 - Erosion tolerable from PFC view: self-healing surface
 - No dust; main chamber material and tritium transported to divertor could be removed via flow outside of tokamak
 - Liquid metal is neutron tolerant; protects substrate from PMI
 - Liquid (and solid) lithium offer access to low recycling, high confinement regimes under proper conditions
 - Very high steady, and transient heat exhaust, in principle (50 MW/m² from electron beam exhausted; also 60 MJ/m² in 1 μ sec)
- Disadvantages and R&D needs
 - Liquid metal surfaces and flows need to be stable
 - Liquid metal chemistry needs to be controlled
 - Temperature windows need optimization
- * Most of experience in the US is with Li, but Sn and eutectics (e.g. Sn-Li) offer some promise in terms of broader temperature windows Maingi - NSTX-U/MFE Jan. 9, 2023

Fusion Nuclear Science Facility aims to qualify materials and PC designs for fusion applications

5

FNSF - Tokamak-based machine with ~520 MW fusion power:

- 4.8-m major radius, 1.2-m minor radius
- Average neutron wall loading ~ 1 MW/m², divertor heat flux ~ 10 MW/m²

The cross-section of the FNSF, identifying the various components in and near the fusion core.

Design calculations: 10 MW/m² input peak heat flux on a flowing divertor PFC, with different profile shapes

Flowing Li Layer with temp. T_{surf} (Free surface or capillary porous) Li coolant channel

Solid Substrate, e.g. RAFM

Gas cooling lines, e.g. He

Several boundary/PFC designs being evaluated

"ITER-like" baffled vertical target divertor

- Reduces deposited fluxes via tilted target in poloidal plane
- Neutrals are preferentially recycled/reflected towards dissipation zones

"2-leg" and "3-leg" [2] simplified divertors

- Plasma facing surfaces are planar in the poloidal plane
- Increased deposited fluxes due to nearly perpendicular angle to separatrix in poloidal plane
- Little control of neutrals

Balanced divertor with baffling and simplified targets

- Length of divertor legs increased with close baffling for neutral control
- Simple geometry in plasma wetted areas to facilitate LM designs

Free surface MHD calculations identify several power exhaust regimes

S. Smolentsev, FED 173 (2021) 112930

Capillary porous system with j x B drive can exhaust required heat flux

A. Khodak and R. Maingi, NME 26 (2021) 100935

CPS can exhaust 10 MW/m² with 7 m/s flow and < 10% of incident heat flux

A. Khodak and R. Maingi, NME 26 (2021) 100935

6

Plasma response calculations with SOLPS-ITER inject Ne and Li in three-plate FNSF geometry

SOLPS modeling: Heat flux reduced to < 10 MW/m² with Ne gas puffing

5

Maingi - NSTX-U/MFE Jan. 9, 2023

J.D. Lore et al., IEEE TPS **50** (2022) 4199

SOLPS modeling: Heat flux reduced to < 10 MW/m² with very little Li leakage into the core

5

13

Maingi - NSTX-U/MFE Jan. 9, 2023

LM PFC designs based on a US program that has identified LM PFC design windows for a Fusion Nuclear Science Facility (FNSF)

- **Goal**: design LM PFC concepts for a nuclear device, i.e. **FNSF** or FPP
- Choices: analyze 1) Li, 2) divertor, 3) flowing PFCs
- **Design issues**: MHD flow instabilities, Li pumping through magnetic field, plasma/material interactions, corrosion/erosion/embrittlement,
- A design window to operate liquid Li divertor PFCs with low evaporation (i.e. < 450 °C) has been identified for a simplified FNSF geometry
 - Self-consistent between LM MHD, heat transfer and plasma modeling
 - Required Li PFC flow speeds ~ 5-15 m/s
 - Two options: a LM jet with high initial speed, and j x B driven flow
 - Li retained in divertor: upstream Li concentrations \leq 1% up to 10²³ Li flux
- <u>Experiments</u> for model validation and to test material and flow properties conducted in test stands and linear flow experiments with applied B
- NSTX-U Liquid Li PFC designs use concepts developed in the FNSF design

Experiments at UIUC include large vacuum test stand with Li flow loops; fill systems; corrosion tests

External Lithium Loader

- Goal: develop new distribution systems for Li PFCs
- Study corrosion & erosion in flowing Li PFCs
- Li loader and loop system inserted in the MEME chamber

Internal Lithium Loop

D. O'Dea, SOFE 2021

Results of the Flowing liquid lithium loop in MEME

- Plate at 13.5° from the normal
- 15 cm length
- With 100 A into the EM pump get a velocity of

v = 1 m/s

- Need to fix a design feature in the plate distributor
 - A gap between the posts and plate allows the Li to flow down the plate rather than wick into the posts
 - · See an initial flow of Li down the edge of plate and good wetting
 - See the big bulk, laminar flow, more indicative of what is seen probably in the loop itself
- Still analysis of results being done and new distributor to be tested next week to try for full wetting

16

D. Andruczyk, D. O'Dea, TOFE 2022

Collaborative Li vapor cloud experiments on MAGNUM-PSI and interpretive modeling conducted

- Experiments were carried out on Magnum-PSI at DIFFER to investigate Li vapor shielding in the presence of He and Ne species
 - Vapor shielding works in all cases
- New experiments to characterize the cloud structure were conducted in 9/2021
- Extension to a 1D model with coupling plasma chemistry code (CRANE) to a plasma transport solver (ZAPDOS) is underway

R. Rizkallah, SOFE 2021

Experiments at ORNL look for signs of embrittlement between liquid Li and RAFM steel at elevated temps.

- Embrittlement: Liquid Li with RAFM (F82H)
- Two tensile specimens with Li inside and one with Ar inside
- Compatibility at 200 °C, as expected
- Additional tests in progress

Prototypical liquid metal flow experiment: linear device with applied magnetic fields, extensive diagnostics

Maingi - NSTX-U/MFE Jan. 9, 2023

E. Kolemen

Model validation experiments in LMX with insulated (reference) and conducting walls (copper insert)

Divertorlets being developed: short flow path, modest flow to achieve desired heat exhaust Poloidal

Toroidal divertorlet concept being tested Current

3 FILLED

21

Maingi - NSTX-U/MFE Jan. 9, 2023

A. Fisher, E. Kolemen, NME 2020; F. Saenz, NF 2022

- A design window to operate liquid Li divertor PFCs with low evaporation (i.e. < 450 °C) has been identified for a simplified 3-leg geometry
 - Self-consistent between LM MHD, heat transfer and plasma modeling
 - Required Li PFC flow speeds ~ 5-15 m/s
 - Two options: a LM jet with high initial speed, and j x B driven flow
 - Li retained in divertor: upstream Li concentrations \leq 1% up to 10²³ Li flux
- Single effect test stands studying wetting with an integrated Li loop
- Linear channel flow experiments are validating the same LM flow codes used for FNSF design
 - Good progress on novel divertorlets concept

 Next step: evaluate liquid Li divertor PFCs with some evaporation (i.e. > 500 °C) as a function of flow speed

 Next step: evaluate impact of differences between published FPP-like designs and FNSF on Li PFC design requirements

• Next step: continue experimental work, including a new scoping of removing Tritium from liquid Li via electrolysis

LM PFC designs based on a US program that has identified LM PFC design windows for a Fusion Nuclear Science Facility (FNSF)

- **Goal**: design LM PFC concepts for a nuclear device, i.e. **FNSF** or FPP
- **Choices**: analyze 1) Li, 2) divertor, 3) flowing PFCs
- **Design issues**: MHD flow instabilities, Li pumping through magnetic field, plasma/material interactions, corrosion/erosion/embrittlement,
- A design window to operate liquid Li divertor PFCs with low evaporation (i.e. < 450 °C) has been identified for a simplified FNSF geometry
 - Self-consistent between LM MHD, heat transfer and plasma modeling
 - Required Li PFC flow speeds ~ 5-15 m/s
 - Two options: a LM jet with high initial speed, and j x B driven flow
 - Li retained in divertor: upstream Li concentrations \leq 1% up to 10²³ Li flux
- <u>Experiments</u> for model validation and to test material and flow properties conducted in test stands and linear flow experiments with applied B
- NSTX-U Liquid Li PFC designs use concepts developed in the FNSF design

Lithium Vapor Box compared with 'Slot' for NSTX-U

• P_{heat} 1-10 MW, q_{peak}^{div} unmitigated 65-92 MW/m²

NSTX-U

Maingi - NSTX-U/MFE Jan. 9, 2023

E. Emdee, Ph.D. 2022, ISLA 2022

Private flux region D puffing more effective at retaining Li in divertor, while common flux region puffing reduces peak heat flux more

E. Emdee, Ph.D. 2022, ISLA 2022

CPSF concept simulated with NSTX heat flux profile

Maingi - NSTX-U/MFE Jan. 9, 2023

CFD analysis using CFX code

NSTX-U

- Numerical Simulation of the flow in the lithium channel with porous first wall
- Exponential Heat Flux profile is imposed;
 q_{peak} ~ 11 [MW/m²]
- Surface temperatures below 450 °C can be achieved at 5 m/s Lithium velocity

CPSF can be designed to create constant temperature evaporating surface suitable for Vapor Box Concept

Parametric studies define parameters of CPSF System

~500C temperature level is currently targeted by Vapor Box divertor System

6

29

Analytical Model Result are confirmed by CFD analysis

A. Khodak, ISLA 2022

- 30
- A design window to operate liquid Li divertor PFCs with low evaporation (i.e. < 450 °C) has been identified for a simplified 3-leg geometry for a Fusion Nuclear Science Facility
 - Self-consistent between LM MHD, heat transfer and plasma modeling
 - Required Li PFC flow speeds ~ 5-15 m/s
 - Two options: a LM jet with high initial speed, and j x B driven flow
 - Li retained in divertor: upstream Li concentrations \leq 1% up to 10²³ Li flux
- Single effect test stands studying wetting with an integrated Li loop
- Linear channel flow experiments are validating the same LM flow codes used for FNSF design
- Pre-conceptual design initiated for NSTX-U Li PFCs, based on FNSF design concepts

NSTX-U

Maingi - NSTX-U/MFE Jan. 9, 2023

Possible LL connection Khodak

Minimalistic concept: tile with insert

- Tile with cutout and close LL loop insert.
- Electric heater can be incorporated inside the insert

NSTX-U

Maingi - NSTX-U/MFE Jan. 9, 2023

Proposed Row of NSTX-U Divertor Tiles with Liquid Lithium

Maingi - NSTX-U/MFE Jan. 9, 2023

